CY91F463NA is a line of the general-purpose 32-bit RISC microcontrollers designed for embedded control applications which require high-speed real-time processing, such as consumer devices and on-board vehicle systems. CY91F463NA uses the FR60 CPU which is compatible with the FR CPUs.

CY91F463NA contains the LIN-USART and CAN controllers.
Note: CY91F463NC improved the features of CY91F463NA and updated the sector map for the flash memory. Please select CY91F463NC for the future development.

Features

FR60 CPU

■ 32-bit RISC, load/store architecture, five-stage pipeline
■ Maximum operating frequency: 80 MHz (oscillator frequency: 4 MHz ; oscillator frequency multiplier: 20 (PLL clock multiplication method))

■ 16-bit fixed-length instructions (basic instructions)
■ Instruction execution speed: 1 instruction per cycle
■ Instructions including memory-to-memory transfer, bit manipulation instructions, and barrel shift instructions: Instructions suitable for embedded applications

■ Function entry/exit instructions and register data multi load store instructions: Instructions supporting C language

■ Register interlock function: Facilitating assembly-language coding
■ Built-in multiplier with instruction-level support
Signed 32-bit multiplication: 5 cycles
Signed 16-bit multiplication: 3 cycles
■ Interrupt (PC/PS saving): 6 cycles (16 priority levels)

- Harvard architecture allowing program access and data access to be executed simultaneously

■ Instructions compatible with the FR family
Internal Peripheral Resources
■ Flash memory capacity : 288 Kbytes
■ Internal RAM capacity: 8 Kbytes (Data RAM) + 2 Kbytes (Instruction/data RAM)

■ General-purpose port: Maximum 48 ports

- DMAC (DMA Controller)

Maximum of 5 channels for able to operate simultaneously 2 transfer sources (internal peripheral/software)
Activation source can be selected by programs

Addressing mode specifies full 32-bit addresses (increment/decrement/fixed)

Transfer mode (burst transfer/step transfer/block transfer)
Transfer data size selectable from 8/16/32-bit
Multi-byte transfer capable (by programs)
DMAC descriptor in I/O areas $\left(200_{\mathrm{H}}\right.$ to $240_{\mathrm{H}}, 1000_{\mathrm{H}}$ to $\left.1024_{\mathrm{H}}\right)$
■ A/D converter (sequential comparison)
10-bit resolution: 8 channels
Conversion time: $1 \mu \mathrm{~s}$ (using at 5 V), $3 \mu \mathrm{~s}$ (using at 3.3 V)
■ External interrupt inputs: 10 channels
■ Bit search module (for REALOS)
Function to search from the MSB (most significant bit) for the position of the first "0", "1" or changed bit in a word

■ LIN-USART (full duplex double buffer): 4 channels
Clock synchronous/asynchronous selectable
Sync-break detection
Internal dedicated baud rate generator
■ $I^{2} \mathrm{C}$ bus interface (Supports 400 kbps): 2 channels
Master/slave transmission and reception
Arbitration function, clock synchronization function
■ CAN controller (C-CAN): 2 channels
Maximum transfer speed: 1 Mbps
32 transmission/reception message buffers
■ 16-bit PPG timer: 8 channels
■ 16-bit reload timer: 4 channels + 1 channel (exclusive A/D converter)

■ 16-bit free-run timer: 4 channels

- Input capture: 4 channels

■ Output compare: 4 channels
■ 8/16-bit up/down counter: 2 channels (8-bit)/1channel (16-bit)
■ Watchdog timer
■ Real-time clock
■ Low-power consumption mode: Sleep/stop mode function

Package: LQFP-64 (LQG064)
CMOS $0.18 \mu \mathrm{~m}$ technology
3.3 V only power supplies or 5 V only power supplies

Operating temperature range:
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (using at 5 V)
$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$ (using at 3.3 V)

Contents

Product Lineup 4
Recommended Setting 29
Pin Assignment 6
Pin Description 7
Power Supply/GND Pins 9
I/O Circuit Type 10
Precautions for Handling The Devices 14
Precautions for Product Design 14
Precautions for Package Mounting 16
Precautions for Use Environment. 17
Handling Devices 18
Notes on Debugger 20
Execution of the RETI Command 20
Break Function 20
Operand Break 20
Notes on PS Register 20
Block Diagram 21
CPU and Control Unit 22
Features 22
Internal Architecture 23
Programming Model 24
Registers 25
Mode Setting 28
Mode Pins 28
Mode Register (MODR) 28
Setting of PLL and Clock Gear 29
Setting of Flash Memory Controller 29
Setting of Clock Modulator 30
Memory Space 34
Memory space 34
Memory Map 35
Flash Memory Sector Configuration 36
I/O Map. 37
Interrupt Source Table 56
Electrical Characteristics 60
Absolute Maximum Rating 60
Recommended Operating Conditions 62
DC Characteristics. 63
AC Characteristics 66
Electrical Characteristics for A/D Converter 72
Notes on the A/D Converter 73
Definition of A/D Converter Terms 74
Flash Memory Program/Erase Characteristics. 76
Ordering Information 77
Package Dimension 78
Main Changes in This Edition 79
Document History 80
Sales, Solutions, and Legal Information 81

1. Product Lineup

Parameter Part Number	CY91V460A	CY91F463NA CY91F463NC
Max core frequency (CLKB)	80 MHz	
Max resource frequency (CLKP)	40 MHz	
Max external bus frequency (CLKT)	40 MHz	-
Max CAN frequency (CLKCAN)	20 MHz	
Technology	$0.35 \mu \mathrm{~m}$	$0.18 \mu \mathrm{~m}$
Watchdog Timer	Yes	No
Watchdog Timer (CR oscillator)	Yes (disengageable)	Yes
Bit search	Yes	
Reset input (INITX)	Yes	
Hardware standby input (HSTX)	Yes	No
Clock modulator	Yes	
Low-power mode	Yes	
DMAC	5 channels	
MAC ($\mu \mathrm{DSP}$)	No	
MMU/MPU	MPU (16 channels) ${ }^{[1]}$	MPU (4 channels) ${ }^{[1]}$
Flash memory	Emulation SRAM 32-bit read data	288 Kbytes
Flash protection	-	Yes
Data RAM	64 Kbytes	8 Kbytes
Instruction/data RAM	64 Kbytes	2 Kbytes
Flash-cache (instruction cache)	16 Kbytes	4 Kbytes
Boot-ROM/BI-ROM	4 Kbytes fixed	4 Kbytes (BI-ROM)
Real-time clock	1 channels	
Free-run timer	8 channels	4 channels
ICU	8 channels	4 channels
OCU	8 channels	4 channels
16-bit reload timer	8 channels	4 channels +1 channel
16-bit PPG	16 channels	8 channels

CY91460N Series

Part Number Parameter	CY91V460A	CY91F463NA CY91F463NC
16-bit PFM	1 channel	No
Sound Generator	1 channel	No
8/16-bit up/down counter	4 channels (8-bit) / 2 channels (16-bit)	2 channels (8-bit) /1 channel (16-bit)
C_CAN	6 channels (128 message buffers)	2 channels (32 message buffers)
LIN-USART	4 channels +4 channels (FIFO) +8 channels	4 channels
$1^{2} \mathrm{C}$ (400 kbps)	4 channels	2 channels
FR external bus	Yes (32-bit address, 32-bit data)	No
External interrupt	16 channels	10 channels
NMI interrupts	Yes	No
Stepping motor controller (SMC)	6 channels	No
LCD controller (40 4)	1 channel	No
10-bit A/D converter	32 channels	8 channels
Alarm comparator	2 channels	No
Clock supervisor	Yes	No
Main clock oscillator	4 MHz	
Sub clock oscillator	32 kHz	-
CR oscillator	100 kHz	$100 \mathrm{kHz} / 2 \mathrm{MHz}$
PLL	$\times 20$	
DSU4	Yes	No
EDSU	Yes (32 BP) ${ }^{[1]}$	Yes (8 BP) ${ }^{[1]}$
Power supply voltage	$3 \mathrm{~V} / 5 \mathrm{~V}$	
Regulator	Yes	
Power consumption	n.a.	$<700 \mathrm{~mW}$
Temperature range (T_{A})	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
Package	BGA-660	LQFP-64

1. MPU channels use EDSU breakpoint registers (shared operation between MPU and EDSU).

2. Pin Assignment

3. Pin Description

Pin No.	Pin Name	1/0	I/O Circuit Type ${ }^{[1]}$	Function
2 to 9	P29_0 to P29_7	I/O	B	General-purpose input/output ports
	AN0 to AN7			Analog input pins for A/D converter
10 to 12	P24_0 to P24_2	I/O	A	General-purpose input/output ports
	INT0 to INT2			External interrupt input pins
13	P24_3	I/O	A	General-purpose input/output port
	INT3			External interrupt input pins
	MONCLK			Clock monitor output pin
14	P24_4	I/O	C	General-purpose input/output port
	INT4			External interrupt input pin
	SDA2			$1^{2} \mathrm{C}$ bus data input/output pin
15	P24_5	I/O	C	General-purpose input/output port
	INT5			External interrupt input pin
	SCL2			$1^{2} \mathrm{C}$ bus clock input/output pin
19	P24_6	I/O	C	General-purpose input/output port
	INT6			External interrupt input pin
	SDA3			$1^{2} \mathrm{C}$ bus data input/output pin
20	P24_7	I/O	C	General-purpose input/output port
	INT7			External interrupt input pin
	SCL3			$\mathrm{I}^{2} \mathrm{C}$ bus clock input/output pin
21	P22_0	I/O	A	General-purpose input/output port
	RX4			RX input pin of CAN4
	INT12			External interrupt input pin
22	P22_1	I/O	A	General-purpose input/output port
	TX4			TX output pin of CAN4
23	P22_2	I/O	A	General-purpose input/output port
	RX5			RX input pin of CAN5
	INT13			External interrupt input pin
24	P22_3	1/O	A	General-purpose input/output port
	TX5			TX output pin of CAN5
25	P20_0	1/O	A	General-purpose input/output port
	SIN2			Data input pin of LIN-USART2
	AIN0			Up/down counter input pin
26	P20_1	I/O	A	General-purpose input/output port
	SOT2			Data output pin of LIN-USART2
	BIN0			Up/down counter input pin
27	P20_2	I/O	A	General-purpose input/output port
	SCK2			Clock input/output pin of LIN-USART2
	CK2			Free-run timer input pin
	ZINO			Up/down counter input pin
28	P20_4	I/O	A	General-purpose input/output port
	SIN3			Data input pin of LIN-USART3
	AIN1			Up/down counter input pin

Pin No.	Pin Name	1/0	I/O Circuit Type ${ }^{[1]}$	Function
29	P20_5	I/O	A	General-purpose input/output port
	SOT3			Data output pin of LIN-USART3
	BIN1			Up/down counter input pin
30	P20_6	I/O	A	General-purpose input/output port
	SCK3			Clock input/output pin of LIN-USART3
	CK3			Free-run timer input pin
	ZIN1			Up/down counter input pin
31	P15_0	1/O	A	General-purpose input/output port
	OCU0			Output compare output pin
	TOT0			Reload timer output pin
32	P15_1	1/O	A	General-purpose input/output port
	OCU1			Output compare output pin
	TOT1			Reload timer output pin
34	X0	-	J	Clock (oscillation) input
35	X1	-	J	Clock (oscillation) output
36	MD3	1	1	Mode setting pin
37	MD2	1	G	Mode setting pin
38	MD1	1	G	Mode setting pin
39	MD0	1	G	Mode setting pin
40	INITX	1	H	External reset input
41	P15_2	I/O	A	General-purpose input/output port
	OCU2			Output compare output pin
	TOT2			Reload timer output pin
42	P15_3	I/O	A	General-purpose input/output port
	OCU3			Output compare output pin
	TOT3			Reload timer output pin
43 to 47 , 50 to 52	P17_7 to P17_0	I/O	A	General-purpose input/output ports
	PPG7 to PPG0			PPG timer output pins
53	P21_6	I/O	A	General-purpose input/output port
	SCK1			Clock input/output pin of LIN-USART1
	CK1			Free-run timer input pin
54	P21_5	I/O	A	General-purpose input/output port
	SOT1			Data output pin of LIN-USART1
55	P21_4	I/O	A	General-purpose input/output port
	SIN1			Data input pin of LIN-USART1
56	P21_2	1/O	A	General-purpose input/output port
	SCK0			Clock input/output pin of LIN-USART0
	CK0			Free-run timer input pin
57	P21_1	I/O	A	General-purpose input/output port
	SOTO			Data output pin of LIN-USART0
58	P21_0	I/O	A	General-purpose input/output port
	SIN0			Data input pin of LIN-USART0

Pin No.	Pin Name	I/O	I/O Circuit Type ${ }^{[1]}$	Function
59	P14_3	I/O	A	General-purpose input/output port
	ICU3			Input capture input pin
	TIN3			External trigger input pin of reload timer
	TTG3			PPG timer input pin
60	P14_2	I/O	A	General-purpose input/output port
	ICU2			Input capture input pin
	TIN2			External trigger input pin of reload timer
	TTG2			PPG timer input pin
61	P14_1	I/O	A	General-purpose input/output port
	ICU1			Input capture input pin
	TIN1			External trigger input pin of reload timer
	TTG1			PPG timer input pin
62	P14_0	I/O	A	General-purpose input/output port
	ICU0			Input capture input pin
	TIN0			External trigger input pin of reload timer
	TTG0			PPG timer input pin

1. For I/O circuit type, refer to " I/O Circuit Type".

3.1 Power Supply/GND Pins

Pin No.	Pin Name	I/O	Function
$17,33,49$	VSS	-	GND pins
16,48	VCC	-	$3.3 \mathrm{~V} / 5 \mathrm{~V}$ power supply pins
64	AVSS	-	Analog GND pin for A/D converter
1	AVCC	-	3.3 V/5 V power supply pin for A/D converter
63	AVRH	-	Reference power supply pin for A/D converter
18	C	-	Capacitor connection pin for internal regulator

4. I/O Circuit Type

Type	Circuit	Remarks
A		CMOS level output (programmable $\mathrm{I}_{\mathrm{OL}}=5 \mathrm{~mA}, \mathrm{I}_{\mathrm{OH}}=-5 \mathrm{~mA}, \mathrm{I}_{\mathrm{OL}}=2 \mathrm{~mA}$, $\mathrm{l}_{\mathrm{OH}}=-2 \mathrm{~mA}$) ■ 2 different CMOS hysteresis inputs with input shutdown function ■ Automotive input with input shutdown function ■ TTL input with input shutdown function ■ Programmable pull-up resistor: approx. $50 \mathrm{k} \Omega$

Type	Circuit	Remarks
B		CMOS level output (programmable $\mathrm{I}_{\mathrm{OL}}=5 \mathrm{~mA}, \mathrm{I}_{\mathrm{OH}}=-5 \mathrm{~mA}, \mathrm{I}_{\mathrm{OL}}=2 \mathrm{~mA}$, $\mathrm{l}_{\mathrm{OH}}=-2 \mathrm{~mA}$) 2 different CMOS hysteresis inputs with input shutdown function - Automotive input with input shutdown function ■ TTL input with input shutdown: approx. $50 \mathrm{k} \Omega$ - Analog input

Type	Circuit	Remarks
C		CMOS level output ($\mathrm{I}_{\mathrm{OL}}=3 \mathrm{~mA}, \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$) 2 different CMOS hysteresis inputs with input shutdown function ■ Automotive input with input shutdown function - TTL input with input shutdown function ■ Programmable pull-up resistor: approx. $50 \mathrm{k} \Omega$

Type	Circuit	Remarks
G		■ MASK ROM and evaluation device: CMOS level input - Flash device: a CMOS level input 口 12 V resistant (for MD [2:0])
H		■ CMOS hysteresis input ■ Pull-up resistor value: approx. $50 \mathrm{k} \Omega$
I		■ CMOS hysteresis input - Pull-down resistor value: approx. $50 \mathrm{k} \Omega$
J		Oscillation circuit

5. Precautions for Handling The Devices

Any semiconductor devices have inherently a certain rate of failure. The possibility of failure is greatly affected by the conditions in which they are used (circuit conditions, environmental conditions, etc.). This page describes precautions that must be observed to minimize the chance of failure and to obtain higher reliability from your Cypress semiconductor devices.

5.1 Precautions for Product Design

This section describes precautions when designing electronic equipment using semiconductor devices.

- Absolute Maximum Ratings

Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

■ Recommended Operating Conditions
The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges. Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their Cypress representatives beforehand.

■ Processing and Protection of Pins
These precautions must be followed when handling the pins which connect semiconductor devices to power supply and input/output functions.

1. Preventing Over-Voltage and Over-Current Conditions

Exposure to voltage or current levels in excess of maximum ratings at any pin is likely to cause deterioration within the device, and in extreme cases leads to permanent damage of the device. Try to prevent such over voltage or over-current conditions at the design stage.
2. Protection of Output Pins

Shorting of output pins to supply pins or other output pins, or connection to large capacitance can cause large current flows. Such conditions if present for extended periods of time can damage the device. Therefore, avoid this type of connection.
3. Handling of Unused Input Pins

Unconnected input pins with very high impedance levels can adversely affect stability of operation. Such pins should be connected through an appropriate resistance to a power supply pin or ground pin.

■ Latch-up
Semiconductor devices are constructed by the formation of P-type and N-type areas on a substrate. When subjected to abnormally high voltages, internal parasitic PNPN junctions (called thyristor structures) may be formed, causing large current levels in excess of several hundred mA to flow continuously at the power supply pin. This condition is called latch-up.

Note:

The occurrence of latch-up not only causes loss of reliability in the semiconductor device, but can cause injury or damage from high heat, smoke or flame. To prevent this from happening, do the following:
(a) Be sure that voltages applied to pins do not exceed the absolute maximum ratings. This should include attention to abnormal noise, surge levels, etc.
(b) Be sure that abnormal current flows do not occur during the power-on sequence.

■ Observance of Safety Regulations and Standards

Most countries in the world have established standards and regulations regarding safety, protection from electromagnetic interference, etc. Customers are requested to observe applicable regulations and standards in the design of products.

- Fail-Safe Design

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

■ Precautions Related to Usage of Devices

Cypress semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).

CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, submarine repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with Cypress sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

5.2 Precautions for Package Mounting

Package mounting may be either lead insertion type or surface mounting type. In either case, quality assurance of heat resistance are applied for mounting under the Cypress's recommended conditions only at the soldering stage. For detailed information on mount conditions, contact the sales representative.

■ Lead Insertion Type

Mounting of lead insertion type packages onto printed circuit boards may be done by two methods: direct soldering on the board, or mounting by using a socket.Direct mounting onto boards normally involves processes for inserting leads into through-holes on the board and using the flow soldering (wave soldering) method of applying liquid solder. In this case, the soldering process usually causes leads to be subjected to thermal stress in excess of the absolute ratings for storage temperature. Mounting processes should conform to Cypress recommended mounting conditions. If socket mounting is used, differences in surface treatment of the socket contacts and IC lead surfaces can lead to contact deterioration after long periods. For this reason it is recommended that the surface treatment of socket contacts and IC leads be verified before mounting.

■ Surface Mount Type

Surface mount packaging has longer and thinner leads than lead-insertion packaging, and therefore leads are more easily deformed or bent. The use of packages with higher pin counts and narrower pin pitch results in increased susceptibility to open connections caused by deformed pins, or shorting due to solder bridges. You must use appropriate mounting techniques. Cypress recommends the solder reflow method, and has established a ranking of mounting conditions for each product. Users are advised to mount packages in accordance with Cypress ranking of recommended conditions.

- Storage of Semiconductor Devices

Because plastic chip packages are formed from plastic resins, exposure to natural environmental conditions will cause absorption of moisture. During mounting, the application of heat to a package that has absorbed moisture can cause surfaces to peel, reducing moisture resistance and causing packages to crack. To prevent, do the following:
(a) Avoid exposure to rapid temperature changes, which cause moisture to condense inside the product. Store products in locations where temperature changes are slight.
(b) Use dry boxes for product storage. Products should be stored below 70% relative humidity, and at temperatures between $+5^{\circ} \mathrm{C}$ to $+30^{\circ} \mathrm{C}$.
(c) When necessary, Cypress packages semiconductor devices in highly moisture-resistant aluminum laminate bags, with a silica gel desiccant. Devices should be sealed in their aluminum laminate bags for storage.
(d) Avoid storing packages where they are exposed to corrosive gases or high levels of dust.

- Baking

Packages that have absorbed moisture may be de-moisturized by baking (heat drying). Follow the Cypress recommended conditions for baking.

- Static Electricity

Because semiconductor devices are particularly susceptible to damage by static electricity, you must take the following precautions:
(a) Maintain relative humidity in the working environment between 40% and 70%. Use of an apparatus for ion generation may be needed to remove electricity.
(b) Electrically ground all conveyors, solder vessels, soldering irons and peripheral equipment.
(c) Eliminate static body electricity by the use of rings or bracelets connected to ground through high resistance (on the level of $1 \mathrm{M} \Omega$). Wearing of conductive clothing and shoes, use of conductive floor mats and other measures to minimize shock loads is recommended.
(d) Ground all fixtures and instruments, or protect with anti-static measures.
(e) Avoid the use of styrofoam or other highly static-prone materials for storage of completed board assemblies.

5.3 Precautions for Use Environment

Reliability of semiconductor devices depends on ambient temperature and other conditions as described above.
For reliable performance, do the following:

1. Humidity

Prolonged use in high humidity can lead to leakage in devices as well as printed circuit boards. If high humidity levels are anticipated, consider anti-humidity processing.
2. Discharge of Static Electricity

When high-voltage charges exist close to semiconductor devices, discharges can cause abnormal operation. In such cases, use anti-static measures or processing to prevent discharges.
3. Corrosive Gases, Dust, or Oil

Exposure to corrosive gases or contact with dust or oil may lead to chemical reactions that will adversely affect the device. If you use devices in such conditions, consider ways to prevent such exposure or to protect the devices.
4. Radiation, Including Cosmic Radiation

Most devices are not designed for environments involving exposure to radiation or cosmic radiation. Users should provide shielding as appropriate.
5. Smoke, Flame

Note: Plastic molded devices are flammable, and therefore should not be used near combustible substances. If devices begin to smoke or burn, there is danger of the release of toxic gases.

Customers considering the use of Cypress products in other special environmental conditions should consult with Cypress sales representatives.

6. Handling Devices

- Power supply pins

Because there are multiple VCC and VSS pins, respective pins at the same potential are interconnected to prevent malfunctions such as latch-up. However, you must connect the pins externally to the power supply and ground lines to reduce the electro-magnetic emission levels, to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total output current rating. Furthermore, the current supply source should be connected to the VCC and VSS pins of the device at a low impedance.

It is recommended to connect a ceramic bypass capacitor of approximately $0.1 \mu \mathrm{~F}$ as a bypass capacitor between the V_{CC} and V_{SS} near this device.

■ Crystal oscillator circuit
Noise in proximity to the X 0 and X 1 pins can cause the device to malfunction. Printed circuit boards should be designed so that the X0 and X1 pins, crystal oscillator (or ceramic oscillator), and bypass capacitors connected to ground are located near the device and ground.
It is recommended that the printed circuit board artwork be designed such that the X 0 and X 1 pins are surrounded by ground plane for the stable operation.
Please request the oscillator manufacturer to evaluate the oscillational characteristics of the crystal and this device.
■ Mode pins (MD0 to MD3)
Connect them directly to VCC or VSS. To prevent the device from entering test mode accidentally due to noise, minimize the lengths of the patterns between each mode pin and VCC or VSS on the printed circuit board as much as possible and connect them at a low impedance. When used pulling down, design your circuit not to generate noises with a resistance $1 \mathrm{k} \Omega$ or less. Test your circuit and confirm that there is no problem.

- Operation at power-on

At power-on, it is necessary to make the terminal INITX "L" level.
Maintain the "L" level input to the INITX pin for the duration of the stabilization wait time immediately after the power on to ensure the stabilization wait time as required by the oscillator circuit.

- Note on oscillator input at power-on

At power-on, ensure that the clock is input until the oscillator stabilization wait time has elapsed.
■ Built-in regulator
As this series includes built-in step-down regulators, always connect a bypass capacitor of $4.7 \mu \mathrm{~F}$ or more to the C pin for use by the regulator.

- Notes on power on/off

Connect/disconnect the power supply pins when power on/off, or turn on/off in the following order.
Power on : VCC \rightarrow AVCC, AVRH
Power off : AVCC, AVRH \rightarrow VCC
■ Precautions for the STOP mode
Set 1 to the bit 0 (OSCD1) of STCR register. When shifting to the STOP mode, a regulator switches to the stand-by regulator (for low-consumption current).Due to the limited drive current, stop the (programming/erasing) access to the A/D converter and Flash before shifting to the STOP mode.

■ Serial communication
There is a possibility to receive wrong data due to the noise or other causes on the serial communication. Therefore, design a board so as to avoid noise.
Consider receiving of wrong data when designing the system. For example, apply a checksum to detect an error. If an error is detected, retransmit the data.

■ Notes on using external clock

When using the external clock, as a general rule you should simultaneously supply X 0 and X 1 pins. And also, the clock signal to $\mathrm{X0}$ should be supplied a clock signal with the reverse phase to X 1 pins. However, in this case the stop mode (oscillation stop mode) must not be used.

Example of using external clock (normal)

Note: Stop mode (oscillation stop mode) cannot be used.

■ Notes on operating in PLL clock mode
If the oscillator is disconnected or the clock input stops when the PLL clock is selected, the microcontroller may continue to operate at the free-running frequency of the self-oscillating circuit of the PLL. However, this self-running operation cannot be guaranteed.

7. Notes on Debugger

7.1 Execution of the RETI Command

If single-step execution is used in an environment where an interrupt occurs frequently, the corresponding interrupt handling routine will be executed repeatedly to the exclusion of other processing. This will prevent the main routine and the handlers for low priority level interrupts from being executed (For example, if the time-base timer interrupt is enabled, stepping over the RETI instruction will always break on the first line of the time-base timer interrupt handler).
Disable the corresponding interrupts when the corresponding interrupt handling routine no longer needs debugging.

7.2 Break Function

If the range of addresses that cause a hardware break (including event breaks) is set to the address of the current system stack pointer or to an area that contains the stack pointer, execution will break after each instruction regardless of whether the user program actually contains data access instructions.

To prevent this, do not set (word) access to the area containing the address of the system stack pointer as the target of the hardware break (including an event breaks).

7.3 Operand Break

It may cause malfunctions if a stack pointer exists in the area which is set as the DSU operand break. Do not set the access to the areas containing the address of system stack pointer as a target of data event break.

7.4 Notes on PS Register

As the PS register is processed in advance by some instructions, when the debugger is being used, the following exception handling may result in execution breaking in an interrupt handling routine or the displayed values of the flags in the PS register being updated.As the microcontroller is designed to carry out reprocessing correctly upon returning from such an EIT event,the operation before and after the EIT always proceeds according to specification.

■ The following behavior may occur if any of the following occurs in the instruction immediately after a DIVOU/DIVOS instruction:
(a) a user interrupt or NMI is accepted; (b) single-step execution is performed; or (c) execution breaks due to a data event or from the emulator menu.
口-D0 and D1 flags are updated in advance.
$\square-A n$ EIT handling routine (user interrupt/NMI or emulator) is executed.
\square-Upon returning from the EIT, the DIVOU/DIVOS instruction is executed and the D0 and D1 flags are updated to the same values as those in 1).

■ The following behavior occurs when an ORCCR, STILM, MOV Ri or PS instruction is executed to enable a user interrupt or NMI source while that interrupt is in the active state.
a-The PS register is updated in advance.
\square-An EIT handling routine (user interrupt/NMI or emulator) is executed.
\square-Upon returning from the EIT, the above instructions are executed and the PS register is updated to the same value as in 1).

8. Block Diagram

9. CPU and Control Unit Internal Architecture

The FR family CPU is a high performance core that is designed based on the RISC architecture with advanced instructions for embedded applications.

9.1 Features

- Adoption of RISC architecture

Basic instruction: 1 instruction per cycle
■ General-purpose registers: 32-bit × 16 registers

- 4 Gbytes linear memory space
- Multiplier installed

32-bit $\times 32$-bit multiplication: 5 cycles
16-bit $\times 16$-bit multiplication: 3 cycles
■ Enhanced interrupt processing function
Quick response speed (6 cycles)
Multiple-interrupt support
Level mask function (16 levels)
■ Enhanced instructions for I/O operation
Memory-to-memory transfer instruction
Bit processing instruction
■ Basic instruction word length: 16 bits
■ Low-power consumption
SLEEP mode/STOP mode

9.2 Internal Architecture

The FR family CPU uses the Harvard architecture in which the instruction bus and data bus are independent of each other.
A 32-bit $\leftrightarrow 16$-bit bus adapter is connected to the 32-bit bus (D-bus) to provide an interface between the CPU and peripheral resources.
A Harvard \leftrightarrow Princeton bus converter is connected to both the I-bus and D-bus to provide an interface between the CPU and the bus controller.

The following figure shows the internal architecture structure.

9.3 Programming Model

9.3.1 Basic Programming Model

9.4 Registers

9.4.1 General-purpose Register

32 bits		
		Initial value
Ro		XXXX XXXXH
R1		\ldots
	\ldots	\ldots
R12		
R13	AC	
R14	FP	XXXX XXXXH
R15	SP	00000000 H

Registers R0 to R15 are general-purpose registers. These registers can be used as accumulators for computation operations and as pointers for memory access.

Enhanced commands are provided for some of the 16 registers to enable their use for particular applications.
R13: Virtual accumulator
R14 : Frame pointer
R15 : Stack pointer
Initial values at reset are undefined for R0 to R14. The value for R15 is 00000000_{H} (SSP value).

9.4.2 PS (Program Status)

This register holds the program status, and is divided into three parts, ILM, SCR, and CCR.
All undefined bits (-) in the diagram are reserved bits. The values are always read "0". Write access to these bits is invalid.

9.4.3 CCR (Condition Code Register)

SV: Supervisor
S: Stack flag
I: Interrupt enable flag
N : Negative enable flag
Z: Zero flag
V: Overflow flag
C: Carry flag

9.4.4 SCR (System Condition Register)

| bit 10 | bit 9 | bit 8 | Initial value |
| :--- | :---: | :---: | :---: | ---: |
| D1 D0 | T | XX0B | |

Flag for step multiplication (D1, D0)
This flag stores interim data during execution of step multiplication.
Step trace trap flag (T)
This flag indicates whether the step trace trap is enabled or disabled.
The step trace trap function is used by emulators. When an emulator is in use, it cannot be used in execution of user programs.

9.4.5 ILM (Interrupt Level Mask Register)

bit 20 bit 19 bit 18 bit 17 bit 16 Initial value

This register stores interrupt level mask values, and the values stored in ILM4 to ILM0 are used for level masking.
The register is initialized to value " 01111_{B} " at reset.

9.4.6 PC (Program Counter)

\square
The program counter indicates the address of the instruction that is being executed.
The initial value at reset is undefined.

9.4.7 TBR (Table Base Register)

The table base register stores the starting address of the vector table used in EIT processing.
The initial value at reset is $000 \mathrm{FFCO} 0_{\mathrm{H}}$.

9.4.8 RP (Return Pointer)

\section*{| bit 31 | bit 0 | |
| :---: | :---: | :---: |
| | | |
| | | Initial value |
| XXXXXXXXH | | |}

The return pointer stores the address to return from subroutines.
During execution of a CALL instruction, the PC value is transferred to this RP register.
During execution of a RET instruction, the contents of the RP register are transferred to PC.
The initial value at reset is undefined.

9.4.9 USP (User Stack Pointer)

\square
When the S flag is " 1 ", the user stack pointer functions as the R 15 register.
$■$ The USP register can also be explicitly specified.
The initial value at reset is undefined.
■ This register cannot be used with RETI instructions.

9.4.10 Multiply \& Divide Registers

\square
These registers are for multiplication and division, and are each 32 bits in length.
The initial value at reset is undefined.

10. Mode Setting

In the FR family, the mode pins (MD2, MD1, MD0) and the mode register (MODR) are used to set the operating mode.

10.1 Mode Pins

The three pins MD2, MD1, MD0 are used to specify the mode vector fetch.
Settings other than shown in the table are prohibited.

Mode Pins ${ }^{[1]}$			Mode Name	Reset Vector Access Area	Remarks
MD2	MD1	MD0			
0	0	0	Internal ROM mode vector	Internal	
0	0	1	External ROM mode vector	External	Not allowed

1. Always use MD3 with " 0 ".

10.2 Mode Register (MODR)

The data written to the mode register using mode vector fetch is called mode data.
After the mode register (MODR) is set, the device operates according to the operation mode set in this register.
The mode register is set by all reset sources. User programs cannot write data to the mode register.
Rewriting is allowed in the emulator mode. In this case, use an 8-bit length data transfer instruction.
Data cannot be written by the transfer instruction of the 16/32-bit length.
Be sure to set these bits to " 00000111_{B} ".
Operation is not guaranteed when any value other than " 00000111_{B} " is set.
Note: The mode data needs to be allocated in 000 FFFF8 8_{H} as byte data. The mode data $\left(00000111_{B}\right)$ must be allocated in bit 31 to bit 24, as the FR family uses the big endian architecture.

11. Recommended Setting

11.1 Setting of PLL and Clock Gear

Table 1. Recommended Setting of PLL Division and Clock Gear

Clock Input [MHz]	PLL Multiplied Setting		Clock Gear Setting		PLL (vco) Output (X) [MHz]	Base Clock [MHz]
	DIVM	DIVN	DIVG	MULG		
4	2	20	16	20	160	80
4	2	19	16	20	152	76
4	2	18	16	20	144	72
4	2	17	16	16	136	68
4	2	16	16	16	128	64
4	2	15	16	16	120	60
4	2	14	16	16	112	56
4	2	13	16	12	104	52
4	2	12	16	12	96	48
4	2	11	16	12	88	44
4	4	10	16	24	160	40
4	4	9	16	24	144	36
4	4	8	16	24	128	32
4	4	7	16	24	112	28
4	6	6	16	24	144	24
4	8	5	16	28	160	20
4	10	4	16	32	160	16
4	12	3	16	32	144	12

11.2 Setting of Flash Memory Controller

11.2.1 Setting of Flash Access Timing

For executing programs with a Flash memory, follow the settings below according to the frequency of CPU clock (CLKB). This setting is the most suitable for a high-speed access to the Flash memory.
Table 2. Flash Memory Read Operating

CPU Clock (CLKB)	ATD	ALEH	EQ	WEXH	WTC
To 24 MHz	0	0	0	0	1
To 48 MHz	0	0	1	0	2
To 80 MHz	1	1	3	0	4

Table 3. Flash Memory Write Operating

CPU Clock (CLKB)	ATD	ALEH	EQ	WEXH	WTC
To 32 MHz	1	0	1	0	4
To 48 MHz	1	0	3	0	5
To 64 MHz	1	1	3	0	6
To 80 MHz	1	1	3	0	7

11.3 Setting of Clock Modulator

The setting values in the table are defined within the rages of base clock frequency; 32 MHz to 80 MHz . The Flash memory access needs to be configured according to the Fmax. PLL and clock gear need to be configured according to the base clock.
Table 4. Setting of Clock Modulator

Modulation (k)	Internal Parameter (N)	CMPR [hex]	Base Clock [MHz]	Fmin [MHz]	Fmax [MHz]
1	3	026F	80	72.6	89.1
1	3	026F	76	69.1	84.5
1	5	02AE	76	65.3	90.8
2	3	046E	76	65.3	90.8
1	3	026F	72	65.5	79.9
1	5	02AE	72	62	85.8
1	7	02ED	72	58.8	92.7
2	3	046E	72	62	85.8
1	3	026F	68	62	75.3
1	5	02AE	68	58.7	80.9
1	7	02ED	68	55.7	87.3
1	9	032C	68	53	95
2	3	046E	68	58.7	80.9
2	5	04AC	68	53	95
3	3	066D	68	55.7	87.3
4	3	086C	68	53	95
1	3	026F	64	58.5	70.7
1	5	02AE	64	55.3	75.9
1	7	02ED	64	52.5	82
1	9	032C	64	49.9	89.1
2	3	046E	64	55.3	75.9
2	5	04AC	64	49.9	89.1
3	3	066D	64	52.5	82
4	3	086C	64	49.9	89.1
1	3	026F	60	54.9	66.1
1	5	02AE	60	51.9	71
1	7	02ED	60	49.3	76.7
1	9	032C	60	46.9	83.3
2	3	046E	60	51.9	71
2	5	04AC	60	46.9	83.3
3	3	066D	60	49.3	76.7
4	3	086C	60	46.9	83.3
5	3	0A6B	60	44.7	91.3
1	3	026F	56	51.4	61.6
1	5	02AE	56	48.6	66.1
1	7	02ED	56	46.1	71.4
1	9	032C	56	43.8	77.6

Modulation (k)	Internal Parameter (N)	CMPR [hex]	Base Clock [MHz]	Fmin [MHz]	Fmax [MHz]
1	11	036B	56	41.8	84.9
1	13	03AA	56	39.9	93.8
2	3	046E	56	48.6	66.1
2	5	04AC	56	43.8	77.6
2	7	04EA	56	39.9	93.8
3	3	066D	56	46.1	71.4
4	3	086C	56	43.8	77.6
5	3	0A6B	56	41.8	84.9
1	3	026F	52	47.8	57
1	5	02AE	52	45.2	61.2
1	7	02ED	52	42.9	66.1
1	9	032C	52	40.8	71.8
1	11	036B	52	38.8	78.6
1	13	03AA	52	37.1	86.8
2	3	046E	52	45.2	61.2
2	5	04AC	52	40.8	71.8
2	7	04EA	52	37.1	86.8
3	3	066D	52	42.9	66.1
3	5	06AA	52	37.1	86.8
4	3	086C	52	40.8	71.8
5	3	0A6B	52	38.8	78.6
6	3	0C6A	52	37.1	86.8
1	3	026F	48	44.2	52.5
1	5	02AE	48	41.8	56.4
1	7	02ED	48	39.6	60.9
1	9	032C	48	37.7	66.1
1	11	036B	48	35.9	72.3
1	13	03AA	48	34.3	79.9
1	15	03E9	48	32.8	89.1
2	3	046E	48	41.8	56.4
2	5	04AC	48	37.7	66.1
2	7	04EA	48	34.3	79.9
3	3	066D	48	39.6	60.9
3	5	06AA	48	34.3	79.9
4	3	086C	48	37.7	66.1
5	3	0A6B	48	35.9	72.3
6	3	0C6A	48	34.3	79.9
7	3	0E69	48	32.8	89.1
1	3	026F	44	40.6	48.1
1	5	02AE	44	38.4	51.6
1	7	02ED	44	36.4	55.7

Modulation (k)	Internal Parameter (N)	CMPR [hex]	Base Clock [MHz]	$\underset{[\mathrm{MHz}]}{\stackrel{\text { Fmin }}{2}}$	Fmax [MHz]
1	9	032C	44	34.6	60.4
1	11	036B	44	33	66.1
1	13	03AA	44	31.5	73
1	15	03E9	44	30.1	81.4
2	3	046E	44	38.4	51.6
2	5	04AC	44	34.6	60.4
2	7	04EA	44	31.5	73
3	3	066D	44	36.4	55.7
3	5	06AA	44	31.5	73
4	3	086C	44	34.6	60.4
4	5	08A8	44	28.9	92.1
5	3	0A6B	44	33	66.1
6	3	0C6A	44	31.5	73
7	3	0 E 69	44	30.1	81.4
1	3	026F	40	37	43.6
1	5	02AE	40	34.9	46.8
1	7	02ED	40	33.1	50.5
1	9	032C	40	31.5	54.8
1	11	036B	40	30	59.9
1	13	03AA	40	28.7	66.1
1	15	03E9	40	27.4	73.7
2	3	046E	40	34.9	46.8
2	5	04AC	40	31.5	54.8
2	7	04EA	40	28.7	66.1
2	9	0528	40	26.3	83.3
3	3	066D	40	33.1	50.5
3	5	06AA	40	28.7	66.1
3	7	06E7	40	25.3	95.8
4	3	086C	40	31.5	54.8
4	5	08A8	40	26.3	83.3
5	3	0A6B	40	30	59.9
6	3	0C6A	40	28.7	66.1
7	3	0 E 69	40	27.4	73.7
8	3	1068	40	26.3	83.3
1	3	026F	36	33.3	39.2
1	5	02AE	36	31.5	42
1	7	02ED	36	29.9	45.3
1	9	032C	36	28.4	49.2
1	11	036B	36	27.1	53.8
1	13	03AA	36	25.8	59.3
1	15	03E9	36	24.7	66.1

Modulation (k)	Internal Parameter (N)	CMPR [hex]	Base Clock [MHz]	Fmin [MHz]	Fmax [MHz]
2	3	046E	36	31.5	42
2	5	04AC	36	28.4	49.2
2	7	04EA	36	25.8	59.3
2	9	0528	36	23.7	74.7
3	3	066D	36	29.9	45.3
3	5	06AA	36	25.8	59.3
3	7	$06 E 7$	36	22.8	85.8
4	3	086C	36	28.4	49.2
4	5	08A8	36	23.7	74.7
5	3	0A6B	36	27.1	53.8
6	3	0C6A	36	25.8	59.3
7	3	0 E 69	36	24.7	66.1
8	3	1068	36	23.7	74.7
9	3	1267	36	22.8	85.8
1	3	026F	32	29.7	34.7
1	5	02AE	32	28	37.3
1	7	02ED	32	26.6	40.2
1	9	032C	32	25.3	43.6
1	11	036B	32	24.1	47.7
1	13	03AA	32	23	52.5
1	15	03E9	32	22	58.6
2	3	046E	32	28	37.3
2	5	04AC	32	25.3	43.6
2	7	04EA	32	23	52.5
2	9	0528	32	21.1	66.1
2	11	0566	32	19.5	89.1
3	3	066D	32	26.6	40.2
3	5	06AA	32	23	52.5
3	7	06E7	32	20.3	75.9
4	3	086C	32	25.3	43.6
4	5	08A8	32	21.1	66.1
5	3	0A6B	32	24.1	47.7
5	5	0AA6	32	19.5	89.1
6	3	0C6A	32	23	52.5
7	3	0 E 69	32	22	58.6
8	3	1068	32	21.1	66.1
9	3	1267	32	20.3	75.9
10	3	1466	32	19.5	89.1

12. Memory Space

12.1 Memory space

The FR family has 4 Gbytes of logical address space (2^{32} addresses) available to the CPU by linear access.

- Direct addressing area

The following address space area is used for I/O.
This area is called direct addressing area, and the address of an operand can be specified directly in an instruction.
The size of directly addressable area depends on the length of the data to be accessed as shown below.
Byte data access: 000_{H} to $0 \mathrm{FF}_{\mathrm{H}}$
Half word access: 000_{H} to $1 \mathrm{FF}_{\mathrm{H}}$
Word data access: 000_{H} to $3 \mathrm{FF}_{\mathrm{H}}$

12.2 Memory Map

(20000000

12.3 Flash Memory Sector Configuration

	CY91F463NC	
addr		
0014:FFFFH	SA7(8 Kbytes)	
0014:DFFFH	SA6(8 Kbytes)	
0014:BFFFH	SA5(8 Kbytes)	
0014:9FFFн	SA4(8 Kbytes)	
$0014: 7 \mathrm{FFFH}$ $0014: 600 \mathrm{H}^{\text {0 }}$	SA3(8 Kbytes)	
0014:5FFFH 0014:4000н	SA2(8 Kbytes)	
0014:3FFFH	SA1(8 Kbytes)	
0014:1FFFH	SA0(8 Kbytes)	
0013:FFFFH 0013:0000н	SA23(64 Kbytes)	
0012:FFFFH	SA22(64 Kbytes)	
0011:FFFFн	SA21(64 Kbytes)	
0010:FFFFH 0010:0000н	SA20(64 Kbytes)	
000F:FFFFH	SA19(64 Kbytes)	
000E:FFFFH	SA18(64 Kbytes)	
000D:FFFF ${ }^{\text {000D:0000н }}$	SA17(64 Kbytes)	
000C:FFFFH 000C:0000н	SA16(64 Kbytes)	
000B:FFFFн 000B:0000H	SA15(64 Kbytes)	
000A:FFFFH	SA14(64 Kbytes)	
0009:FFFFH	SA13(64 Kbytes)	
$\begin{aligned} & \text { 0008:FFFFH } \\ & \text { 0008:0000н } \end{aligned}$	SA12(64 Kbytes)	
0007:FFFFн	SA11(64 Kbytes)	
0006:FFFFн	SA10(64 Kbytes)	
$\begin{aligned} & 0005: F F F F_{H} \\ & 0005: 0000 \mathrm{H} \end{aligned}$	SA9(64 Kbytes)	
$\begin{aligned} & \text { 0004:FFFFH } \\ & \text { 0004:0000н } \end{aligned}$	SA8(64 Kbytes)	
16-bit write mode 32-bit read mode	addr+0 ${ }^{\text {addr }}$ (1	addr+2 ${ }^{\text {addr }+3}$
	dat[31:16]	dat[15:0]
	dat[31:0]	

The shaded area is unusable.

Note: CY91F463NC has a different sector map for the flash memory to that of CY91F463NA. The sector map showed above is suited for CY91F463NC, not for CY91F463NA.

13. I/O Map

Note: Initial values of register bits are represented as follows:
" 1 ": Initial value " 1 "
" 0 ": Initial value " 0 "
" X ": Initial value " undefined "
" - ": No physical register at this location
Access is prohibited to areas where the data access attributes are undefined.

Address	Register				Block
	+0	+1	+2	+3	
$\begin{aligned} & 000000_{\mathrm{H}} \\ & \text { to } \\ & 000008_{\mathrm{H}} \end{aligned}$	Reserved				R-bus Port Data Register
$00000 \mathrm{C}_{\mathrm{H}}$	Reserved		PDR14 [R/W] ---- XXXX	PDR15 [R/W] ---- XXXX	
$0^{000010}{ }_{H}$	Reserved	PDR17 [R/W] XXXXXXXX	Reserved		
000014_{H}	$\begin{gathered} \text { PDR20 [R/W] } \\ \text {-XXX-XXX } \end{gathered}$	$\begin{aligned} & \text { PDR21 [R/W] } \\ & -X X X-X X X \end{aligned}$	PDR22 [R/W] ---- XXXX	Reserved	
000018_{H}	PDR24 [R/W] XXXXXXXX	Reserved			
$00001 \mathrm{C}_{\mathrm{H}}$	Reserved	PDR29 [R/W] XXXXXXXX	Reserved		
000020_{H}	Reserved				
$\begin{aligned} & 000024_{H} \\ & \text { to } \\ & 00002 C_{H} \end{aligned}$	Reserved				Reserved
$0^{000030}{ }_{H}$	EIRR0 [R/W] 00000000	ENIR0 [R/W] 00000000	$\begin{gathered} \hline \text { ELVRO }[R / W] \\ 00000000 \quad 00000000 \end{gathered}$		External interrupt 0 to 7
$0^{000034}{ }_{H}$	EIRR1 [R/W] 00000000	ENIR1 [R/W] 00000000	ELVR1 [R/W]0000000000000000		External interrupt 12, 13
000038_{H}	DICR [R/W]	HRCL [R/W] $0--11111$	Reserved		DLYI/I-unit
$0^{00003 C}{ }_{H}$	Reserved				Reserved
000040_{H}	$\begin{aligned} & \text { SCR00 [R/W, W] } \\ & 00000000 \end{aligned}$	SMR00 [R/W, W] 00000000	$\begin{aligned} & \text { SSR00 [R/W, R] } \\ & 00001000 \end{aligned}$	$\begin{aligned} & \text { RDR00/TDR00 } \\ & \text { [R/W] } \\ & 00000000 \end{aligned}$	LIN-USARTO
$0^{000044}{ }_{\text {H }}$	ESCR00 [R/W] 00000X00	ECCR00 [R/W, R, W] 000000XX	Reserved		
$0^{000048}{ }_{\text {H }}$	SCR01 [R/W, W] 00000000	SMR01 [R/W, W] 00000000	$\begin{aligned} & \text { SSR01 [R/W, R] } \\ & 00001000 \end{aligned}$	$\begin{aligned} & \hline \text { RDR01/TDR01 } \\ & \text { [R/W] } \\ & 00000000 \end{aligned}$	LIN-USART1
$00004 \mathrm{C}_{\mathrm{H}}$	ESCR01 [R/W] 00000X00	ECCR01 [R/W, R, W] 000000XX	Reserved		
000050_{H}	$\begin{aligned} & \text { SCR02 [R/W, W] } \\ & 00000000 \end{aligned}$	SMR02 [R/W, W] 00000000	$\begin{aligned} & \text { SSR02 [R/W, R] } \\ & 00001000 \end{aligned}$	RDR02/TDR02 $[R / W]$ 00000000	LIN-USART2
$0^{000054 H}$	ESCR02 [R/W] 00000×00	ECCR02 [R/W, R, W] 000000XX	Reserved		
000058_{H}	$\begin{gathered} \text { SCR03 [R/W, W] } \\ 00000000 \end{gathered}$	SMR03 [R/W, W] 00000000	$\begin{aligned} & \text { SSR03 [R/W, R] } \\ & 00001000 \end{aligned}$	$\begin{aligned} & \text { RDR03/TDR03 } \\ & \text { [R/W] } \\ & 00000000 \end{aligned}$	LIN-USART3
$0^{00005} \mathrm{C}_{\mathrm{H}}$	ESCR03 [R/W] 00000×00	ECCR03 [R/W, R, W] 000000XX	Reserved		

Address	Register				Block
	+0	+1	+2	+3	
$\begin{aligned} & 000060_{\mathrm{H}} \\ & \text { to } 00007 \mathrm{C}_{\mathrm{H}} \end{aligned}$	Reserved				Reserved
$0^{000080}{ }_{H}$	$\begin{gathered} \text { BGR100 [R/W] } \\ 00000000 \end{gathered}$	$\begin{gathered} \hline \text { BGR000 [R/W] } \\ 00000000 \end{gathered}$	$\begin{aligned} & \text { BGR101 [R/W] } \\ & 00000000 \end{aligned}$	$\begin{aligned} & \text { BGR001 [R/W] } \\ & 00000000 \end{aligned}$	
$0^{000084}{ }_{H}$	$\begin{gathered} \text { BGR102 [R/W] } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { BGR002 [R/W] } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { BGR103 [R/W] } \\ 00000000 \end{gathered}$	$\begin{aligned} & \text { BGR003 [R/W] } \\ & 00000000 \end{aligned}$	Baud rate Generator LIN-USARTO to 3
$\begin{aligned} & 000088_{\mathrm{H}}, \\ & 00008 \mathrm{C}_{\mathrm{H}} \end{aligned}$	Reserved				
$\begin{aligned} & 000090_{\mathrm{H}} \\ & \text { to } 0000 \mathrm{FC}_{\mathrm{H}} \end{aligned}$	Reserved				Reserved
$0^{000100}{ }_{H}$	$\begin{array}{r} \text { GC } \\ 00110 \end{array}$	$\begin{aligned} & \text { /W] } \\ & 010000 \end{aligned}$	Reserved	GCN20 [R/W] ---0000	$\begin{gathered} \text { PPG Control } \\ 0 \text { to } 3 \end{gathered}$
${ }^{000104}{ }_{H}$	$\begin{array}{r} \mathrm{GC} \\ 00110 \end{array}$	$\begin{aligned} & \text { /W] } \\ & 010000 \end{aligned}$	Reserved	$\begin{gathered} \hline \text { GCN21 [R/W] } \\ ---0000 \end{gathered}$	PPG Control 4 to 7
$0^{000108}{ }_{H}$	Reserved				Reserved
$0^{000110_{H}}$	PTMR00 [R]1111111111111111		PCSR00 [W] XXXXXXXX XXXXXXXX		PPG 0
$0^{000114 H}$	$\begin{array}{r} P \\ X X X X X X \end{array}$	W] XXXXXX	$\begin{aligned} & \text { PCNH00 [R/W] } \\ & 0000000- \end{aligned}$	$\begin{gathered} \text { PCNL00 [R/W] } \\ 000000-0 \end{gathered}$	
000118_{H}	$\begin{array}{r} \mathrm{P} \\ 11111 \end{array}$	$[R]$	$\begin{gathered} \text { PCSR01 } \\ \text { [W] } \\ X X X X X X X \\ X X X X X X X \end{gathered}$		PPG 1
$00011 C_{H}$	$\begin{array}{r} \mathrm{Pl} \\ \mathrm{xXXXXX} \end{array}$	W] XXXXXX	$\begin{gathered} \text { PCNH01 [R/W] } \\ 0000000- \end{gathered}$	$\begin{gathered} \hline \text { PCNL01 [R/W] } \\ 000000-0 \end{gathered}$	
$0^{000120}{ }_{H}$	PTMR02 [R]11111111111111		PCSR02 [W] XXXXXXXX XXXXXXXX		PPG 2
$0^{000124}{ }_{\text {H }}$	$\begin{array}{r} \mathrm{Pl} \\ \mathrm{XXXXXX} \end{array}$	W] XXXXXX	$\begin{gathered} \text { PCNH02 [R/W] } \\ 0000000- \end{gathered}$	$\begin{gathered} \hline \text { PCNL02 [R/W] } \\ 000000-0 \end{gathered}$	
000128_{H}	$\begin{array}{r} P \\ 11111 \end{array}$	$\begin{aligned} & {[R]} \\ & 111111 \end{aligned}$	PCSR03 [W] XXXXXXXX XXXXXXXX		PPG 3
$00012 \mathrm{C}_{\mathrm{H}}$	$\begin{array}{r} P \\ X X X X X> \end{array}$	W] XXXXXX	$\begin{gathered} \hline \text { PCNH03 [R/W] } \\ 0000000- \end{gathered}$	$\begin{gathered} \hline \text { PCNL03 [R/W] } \\ 000000-0 \end{gathered}$	
$0^{000130}{ }_{H}$	$\begin{array}{r} \mathrm{P} \\ 11111 \end{array}$	$\begin{aligned} & {[\mathrm{R}]} \\ & 111111 \end{aligned}$	$\begin{gathered} \text { PCSR04 } \\ \text { [W] } \\ X X X X X X X \\ X X X X X X X \end{gathered}$		PPG 4
$0^{000134}{ }_{H}$	$\begin{array}{r} \mathrm{Pl} \\ \mathrm{XXXXXX} \end{array}$	W] XXXXXX	$\begin{gathered} \text { PCNH04 [R/W] } \\ 0000000- \end{gathered}$	$\begin{gathered} \text { PCNL04 [R/W] } \\ 000000-0 \end{gathered}$	
000138_{H}	$\begin{array}{r} \hline P \\ 11111 \end{array}$	$\begin{aligned} & {[R]} \\ & 111111 \end{aligned}$	PCSR05 [W] XXXXXXXX XXXXXXXX		PPG 5
$00013 \mathrm{C}_{\mathrm{H}}$	$\begin{array}{r} \mathrm{Pl} \\ \mathrm{XXXXXX} \end{array}$	W] XXXXXX	$\begin{gathered} \text { PCNH05 [R/W] } \\ 0000000- \end{gathered}$	$\begin{gathered} \text { PCNL05 [R/W] } \\ 000000-0 \end{gathered}$	
000140_{H}	$\begin{array}{r} \mathrm{P} \\ 11111 \end{array}$	$[R]$	PCSR06 [W] XXXXXXXX XXXXXXXX		PPG 6
$0^{000144}{ }_{\text {H }}$	$\begin{array}{r} P \\ X X X X X> \end{array}$	W] XXXXXX	$\begin{aligned} & \text { PCNH06 [R/W] } \\ & 0000000- \end{aligned}$	$\begin{gathered} \text { PCNL06 [R/W] } \\ 000000-0 \end{gathered}$	
$000148_{\text {H }}$	$\begin{array}{r} \hline P \\ 11111 \end{array}$	$\begin{aligned} & {[R]} \\ & 111111 \end{aligned}$	PCSR07 [W] XXXXXXXX XXXXXXXX		PPG 7
$00014 \mathrm{C}_{\mathrm{H}}$	$\begin{array}{r} \mathrm{Pl} \\ \mathrm{XXXXXX} \end{array}$	W] XXXXXX	$\begin{gathered} \text { PCNH07 [R/W] } \\ 0000000- \end{gathered}$	$\begin{gathered} \text { PCNL07 [R/W] } \\ 000000-0 \end{gathered}$	

Address	Register				Block
	+0	+1	+2	+3	
$\begin{aligned} & 0_{000150_{H}} \\ & \text { to } 00017 \mathrm{C}_{\mathrm{H}} \end{aligned}$	Reserved				Reserved
$0^{000180}{ }_{H}$	Reserved	$\begin{gathered} \hline \text { ICS01 [R/W] } \\ 00000000 \end{gathered}$	Reserved	$\begin{aligned} & \text { ICS23 [R/W] } \\ & 00000000 \end{aligned}$	Input Capture 0 to 3
$0^{000184 H}$	IPCPO [R] XXXXXXXX XXXXXXXX		IPCP1 [R] XXXXXXXX XXXXXXXX		
000188_{H}	IPCP2 [R] XXXXXXXX XXXXXXXX		IPCP3 [R] XXXXXXXX XXXXXXXX		
$00018 \mathrm{C}_{\mathrm{H}}$	OCS01 [R/W]-- -0--00 0000--00		OCS23 [R/W]$--0-000000-00$		Output Compare 0 to 3
$0^{000190}{ }_{H}$	OCCPO [R/W] XXXXXXXX XXXXXXXX		OCCP1 [R/W] XXXXXXXX XXXXXXXX		
$0^{000194}{ }_{H}$	OCCP2 [R/W] XXXXXXXX XXXXXXXX		OCCP3 [R/W] XXXXXXXX XXXXXXXX		
$\begin{aligned} & 000198_{\mathrm{H}}, \\ & 00019 \mathrm{C}_{\mathrm{H}} \end{aligned}$	Reserved				Reserved
$0001 \mathrm{AO}_{\mathrm{H}}$	Reserved			ADERL [R/W] 00000000	A/D Converter
$0001 \mathrm{~A} 4_{\mathrm{H}}$	ADCS1 [R/W] 00000000	$\begin{gathered} \text { ADCSO [R/W] } \\ 00000000 \end{gathered}$	ADCR1 [R] 000000XX	ADCR0 [R] XXXXXXXX	
$0001 \mathrm{~A}^{\mathrm{H}}$	ADCT1 [R/W] 00010000	ADCTO [R/W] 00101100	$\begin{gathered} \text { ADSCH [R/W] } \\ --00000 \end{gathered}$	$\begin{gathered} \text { ADECH [R/W] } \\ ---00000 \end{gathered}$	
$0001 \mathrm{AC}_{\mathrm{H}}$	Reserved				Reserved
$0^{0001 B 0_{H}}$	TMRLR0 [W] XXXXXXXX XXXXXXXX		TMRO [R] XXXXXXXX XXXXXXXX		Reload Timer 0 (PPG0, PPG1)
$0001 \mathrm{~B} 4_{\mathrm{H}}$	Reserved		$\begin{aligned} & \text { TMCSRH0 } \\ & \text { [R/W] } \\ & --00000 \end{aligned}$	$\begin{aligned} & \hline \text { TMCSRLO } \\ & \text { [R/W] } \\ & 0-000000 \end{aligned}$	
$0001 \mathrm{~B} 8_{\mathrm{H}}$	$\begin{array}{r} \text { TM } \\ \mathrm{XXXXXX} \end{array}$	W] XXXXXX	TMR1 [R] XXXXXXXX XXXXXXXX		Reload Timer 1 (PPG2, PPG3)
$0001 \mathrm{BC}_{\mathrm{H}}$	Reserved		$\begin{gathered} \text { TMCSRH1 } \\ \text { [R/W] } \\ --00000 \end{gathered}$	$\begin{aligned} & \text { TMCSRL1 } \\ & \text { [R/W] } \\ & 0-000000 \end{aligned}$	
$0^{0001 C 0}{ }_{H}$	TMRLR2 [W] XXXXXXXX XXXXXXXX		$\begin{gathered} \text { TMR2 }[R] \\ x X X X X X X X X X X X X \end{gathered}$		Reload Timer 2 (PPG4, PPG5)
$0^{0001 C 4 H}$	Reserved		$\begin{gathered} \text { TMCSRH2 } \\ {[R / W]} \\ --00000 \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { TMCSRL2 } \\ & {[R / W]} \\ & 0-000000 \end{aligned}$	
$0001 \mathrm{C} 8_{\mathrm{H}}$	TMRLR3 [W] XXXXXXXX XXXXXXXX		TMR3 [R] XXXXXXXX XXXXXXXX		Reload Timer 3 (PPG6, PPG7)
${ }^{0001} \mathrm{CC}_{\mathrm{H}}$	Reserved		$\begin{gathered} \text { TMCSRH3 } \\ {[\text { R/W] }} \\ --00000 \end{gathered}$	$\begin{aligned} & \hline \text { TMCSRL3 } \\ & \text { [R/W] } \\ & 0-000000 \end{aligned}$	
$\begin{aligned} & 0001 \mathrm{DO}_{\mathrm{H}} \\ & \text { to } 0001 \mathrm{E} 7_{\mathrm{H}} \end{aligned}$	Reserved				Reserved

Address	Register				Block
	+0	+1	+2	+3	
$0^{0001 E 8}{ }_{H}$	TMRLR7 [W] XXXXXXXX XXXXXXXX		TMR7XXX[R]XXXXXXXX		Reload Timer 7 (A/D converter)
$0001 \mathrm{EC}_{\mathrm{H}}$	Reserved		$\begin{aligned} & \text { TMCSRH7 } \\ & {[R / W]} \\ & --00000 \end{aligned}$	$\begin{aligned} & \text { TMCSRL7 } \\ & \text { [R/W] } \\ & 0-000000 \end{aligned}$	
$0^{0001 F 0}{ }_{H}$	TCDTO [R/W] XXXXXXXX XXXXXXXX		Reserved	$\begin{gathered} \hline \text { TCCSO [R/W] } \\ 00000000 \end{gathered}$	Free-run Timer 0 (ICU0, ICU1)
$0001 \mathrm{~F} 4_{\mathrm{H}}$	TCDT1 [R/W] XXXXXXXX XXXXXXXX		Reserved	$\begin{gathered} \hline \text { TCCS1 [R/W] } \\ 00000000 \end{gathered}$	Free-run Timer 1 (ICU2, ICU3)
$0^{0001 F 8}{ }_{\text {H }}$	TCDT2 [R/W] XXXXXXXX XXXXXXXX		Reserved	$\begin{gathered} \hline \text { TCCS2 [R/W] } \\ 00000000 \end{gathered}$	Free-run Timer 2 (OCU0, OCU1)
$0001 \mathrm{FC}_{\mathrm{H}}$	TCDT3 [R/W] XXXXXXXX XXXXXXXX		Reserved	$\begin{gathered} \hline \text { TCCS3 [R/W] } \\ 00000000 \end{gathered}$	Free-run Timer 3 (OCU2, OCU3)
$0^{000200 ~}{ }_{H}$	DMACA0 [R/W] *$000000000000 X X X X X X X X X X X X X X X X X X$				DMAC
$0^{000204 H}$	DMACB0 [R/W]0000000000000000 XXXXXXXX XXXXXXXX				
000208_{H}	DMACA1 [R/W] *$000000000000 \times X X X \text { XXXXXXXX XXXXXXXX }$				
$0^{00020} C_{H}$	DMACB1 [R/W] 0000000000000000 XXXXXXXX XXXXXXXX				
000210_{H}	DMACA2 [R/W]* $000000000000 \times X X X$ XXXXXXXX XXXXXXXX				
000214H	DMACB2 [R/W] 0000000000000000 XXXXXXXX XXXXXXXX				
000218_{H}	DMACA3 [R/W] * $000000000000 \times X X X$ XXXXXXXX XXXXXXXX				
$00021 C_{H}$	DMACB3 [R/W] 0000000000000000 XXXXXXXX XXXXXXXX				
$0^{000220}{ }_{H}$	DMACA4 [R/W] * $000000000000 \times X X X$ XXXXXXXX XXXXXXXX				
$0^{000224}{ }_{\text {H }}$	DMACB4 [R/W]$0000000000000000 \text { XXXXXXXX XXXXXXXX }$				
$\begin{aligned} & 000228_{H} \\ & \text { to } \\ & 00023 C_{H} \end{aligned}$	Reserved				
$0^{000240}{ }_{H}$	DMACR [R/W] $0-\text { - - } 0000$	Reserved			
$\begin{aligned} & \text { 000244 } \\ & \text { to } \\ & 0002 \mathrm{FC}_{\mathrm{H}} \end{aligned}$	Reserved				Reserved
$0^{000300}{ }_{H}$	UDRC1 [W] 00000000	UDRCO [W] 00000000	UDCR1 [R] 00000000	UDCRO [R] 00000000	Up/Down Counter 0, 1
${ }^{000304}{ }_{H}$	$\begin{aligned} & \hline \text { UDCCHO [R/W] } \\ & 00000000 \end{aligned}$	UDCCLO [R/W] 00001000	Reserved	$\begin{gathered} \hline \text { UDCSO [R/W] } \\ 00000000 \end{gathered}$	
000308_{H}	$\begin{aligned} & \text { UDCCH1 [R/W] } \\ & 00000000 \end{aligned}$	UDCCL1 [R/W] 00001000	Reserved	$\begin{gathered} \hline \text { UDCS1 [R/W] } \\ 00000000 \end{gathered}$	

Address	Register				Block
	+0	+1	+2	+3	
$\begin{gathered} 00030 C_{H} \\ \text { to } \\ 000364_{H} \end{gathered}$	Reserved				Reserved
$0^{000368 \%}$	$\begin{aligned} & \text { IBCR2 [R/W] } \\ & 00000000 \end{aligned}$	$\begin{aligned} & \text { IBSR2 [R] } \\ & 00000000 \end{aligned}$	$\begin{gathered} \text { ITBAH2 [R/W] } \\ ----00 \end{gathered}$	$\begin{aligned} & \text { ITBAL2 [R/W] } \\ & 00000000 \end{aligned}$	$1^{2} \mathrm{C} 2$
$0^{00036} C_{H}$	$\begin{gathered} \text { ITMKH2 [R/W] } \\ 00---11 \end{gathered}$	$\begin{gathered} \text { ITMKL2 [R/W] } \\ 11111111 \end{gathered}$	$\begin{gathered} \hline \text { ISMK2 [R/W] } \\ 01111111 \end{gathered}$	ISBA2 [R/W] $\text { - } 0000000$	
$0^{000370}{ }_{H}$	Reserved	IDAR2 [R/W] 00000000	$\begin{gathered} \text { ICCR2 [R/W] } \\ -0011111 \end{gathered}$	Reserved	
$000374{ }_{H}$	IBCR3 [R/W] 00000000	IBSR3 [R] 00000000 00000000	ITBAH3 [R/W] ----- 00	ITBAL3 [R/W] 00000000	$1^{2} \mathrm{C} 3$
$0^{000378}{ }_{\text {H }}$	$\begin{aligned} & \text { ITMKH3 [R/W] } \\ & 00----11 \end{aligned}$	$\begin{gathered} \text { ITMKL3 [R/W] } \\ 11111111 \end{gathered}$	$\begin{gathered} \text { ISMK3 [R/W] } \\ 01111111 \end{gathered}$	ISBA3 [R/W] - 0000000	
${ }^{00037} \mathrm{C}_{\mathrm{H}}$	Reserved	$\begin{gathered} \text { IDAR3 [R/W] } \\ 00000000 \end{gathered}$	$\begin{gathered} \hline \text { ICCR3 [R/W] } \\ -0011111 \end{gathered}$	Reserved	
$\begin{gathered} 000380_{H} \\ \text { to } \\ 00038 C_{H} \end{gathered}$	Reserved				Reserved
$0^{000390}{ }_{H}$	ROMS [R]1111111101001111		Reserved		ROM Select Register
$\begin{gathered} 000394_{\mathrm{H}} \\ \text { to } \\ 0003 E \mathrm{C}_{\mathrm{H}} \end{gathered}$	Reserved				Reserved
$0^{0003 F 0}{ }_{H}$					Bit Search Module
$0003 \mathrm{~F} 4_{\mathrm{H}}$					
$0003 \mathrm{~F} 8_{\mathrm{H}}$					
$0^{0003 F C}{ }_{H}$					
$\begin{gathered} 000400_{\mathrm{H}} \\ \text { to } \\ 00043 \mathrm{C}_{\mathrm{H}} \end{gathered}$	Reserved				Reserved
$0^{000440}{ }_{H}$	$\begin{gathered} \text { ICR00 [R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR01 [R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR02 [R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR03 [R/W] } \\ ---11111 \end{gathered}$	Interrupt Control Unit
$0^{000444}{ }_{H}$	$\begin{gathered} \hline \text { ICR04[R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR05 [R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR06 [R/W] } \\ ---11111 \end{gathered}$	$\begin{aligned} & \text { ICR07 [R/W] } \\ & ---11111 \end{aligned}$	
$0^{000448}{ }_{\text {H }}$	$\begin{gathered} \text { ICR08 [R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR09 [R/W] } \\ --11111 \end{gathered}$	$\begin{aligned} & \text { ICR10[R/W] } \\ & ---11111 \end{aligned}$	$\begin{aligned} & \text { ICR11 [R/W] } \\ & ---11111 \end{aligned}$	
$00044 C_{H}$	$\begin{gathered} \hline \text { ICR12 [R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR13[R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR14[R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR15[R/W] } \\ ---11111 \end{gathered}$	
$0^{000450}{ }_{H}$	$\begin{gathered} \text { ICR16[R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR17[R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR18 [R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR19 [R/W] } \\ ---11111 \end{gathered}$	

Address	Register				Block
	+0	+1	+2	+3	
$0^{000454}{ }_{H}$	$\begin{gathered} \text { ICR20 [R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR21 [R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR22 [R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR23 [R/W] } \\ ---11111 \end{gathered}$	Interrupt Control Unit
$0^{000458}{ }_{H}$	$\begin{gathered} \hline \text { ICR24[R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR25[R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR26[R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR27[R/W] } \\ ---11111 \end{gathered}$	
$00045 \mathrm{C}_{\mathrm{H}}$	$\begin{gathered} \hline \text { ICR28[R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR29 [R/W] } \\ ---11111 \end{gathered}$	$\begin{aligned} & \text { ICR30[R/W] } \\ & ---11111 \end{aligned}$	$\begin{gathered} \hline \text { ICR31[R/W] } \\ ---11111 \end{gathered}$	
000460_{H}	$\begin{gathered} \hline \text { ICR32[R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR33[R/W] } \\ ---11111 \end{gathered}$	$\begin{aligned} & \text { ICR34[R/W] } \\ & ---11111 \end{aligned}$	$\begin{gathered} \hline \text { ICR35[R/W] } \\ ---11111 \end{gathered}$	
${ }^{000464}{ }_{H}$	$\begin{gathered} \hline \text { ICR36[R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR37[R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR38 [R/W] } \\ ---11111 \end{gathered}$	ICR39 [R/W]	
000468_{H}	$\begin{aligned} & \text { ICR40[R/W] } \\ & ---11111 \end{aligned}$	$\begin{gathered} \text { ICR41[R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR42 [R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR43 [R/W] } \\ ---11111 \end{gathered}$	
$00046 \mathrm{C}_{\mathrm{H}}$	$\begin{gathered} \text { ICR44[R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR45[R/W] } \\ --11111 \end{gathered}$	$\begin{gathered} \text { ICR46[R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR47[R/W] } \\ ---11111 \end{gathered}$	
000470_{H}	$\begin{gathered} \hline \text { ICR48 [R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR49 [R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR50 [R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR51 [R/W] } \\ ---11111 \end{gathered}$	
$0^{000474}{ }_{H}$	$\begin{aligned} & \text { ICR52[R/W] } \\ & ---11111 \end{aligned}$	$\begin{aligned} & \text { ICR53[R/W] } \\ & ---11111 \end{aligned}$	$\begin{aligned} & \text { ICR54[R/W] } \\ & ---11111 \end{aligned}$	$\begin{aligned} & \text { ICR55[R/W] } \\ & ---11111 \end{aligned}$	
$0^{000478}{ }_{\text {H }}$	$\begin{gathered} \text { ICR56 [R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR57[R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR58 [R/W] } \\ ---11111 \end{gathered}$	ICR59 [R/W]	
$00047 \mathrm{C}_{\mathrm{H}}$	ICR60[R/W] $---11111$	$\begin{gathered} \text { ICR61 [R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR62 [R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR63 [R/W] } \\ ---11111 \end{gathered}$	
000480_{H}	$\begin{aligned} & \text { RSRR [R/W] } \\ & 10000000 \end{aligned}$	STCR [R/W] 001100-1	TBCR [R/W] 00XXXX00	CTBR [W] XXXXXXXX	Clock Control Unit
$0^{000484_{H}}$	CLKR [R/W]	WPR [W] XXXXXXXX	DIVR0 [R/W] 00000011	DIVR1 [R/W] 00000000	
000488 ${ }_{\text {H }}$	Reserved				Reserved
$0^{00048 C_{H}}$	PLLDIVM [R/W] ---- 0000	PLLDIVN [R/W] - - 000000	PLLDIVG [R/W] ---- 0000	$\begin{gathered} \text { PLLMULG [R/W] } \\ 00000000 \end{gathered}$	PLL Clock Gear Unit
000490_{H}	$\begin{gathered} \text { PLLCTRL [R/W] } \\ ---0000 \end{gathered}$	Reserved			
000494_{H}	Reserved				Reserved
000498_{H}	$\begin{gathered} \text { PORTEN [R/W] } \\ ----00-00 \end{gathered}$	Reserved			Port Input Enable Control
$00049 \mathrm{C}_{\mathrm{H}}$	Reserved				Reserved
$0004 \mathrm{AO}_{\mathrm{H}}$	Reserved	WTCER [R/W] $\text { - - - - - } 00$	$\begin{array}{r} W \\ 000000 \end{array}$	R/W] 0-00-0	Real Time Clock (Watch Timer)
0004A4H	Reserved	---XXXXX $\begin{gathered}\text { WTBR [R/W] } \\ \text { XXXXXXX }\end{gathered}$			
$0004 \mathrm{~A} 8_{\mathrm{H}}$	WTHR [R/W] $\text { - - - } 00000$	WTMR [R/W] $\text { - - } 000000$	WTSR [R/W] $--000000$	Reserved	
$0004 \mathrm{AC}_{\mathrm{H}}$	Reserved		$\begin{gathered} \text { CSCFG [R/W] } \\ 0 \times 000000 \end{gathered}$	CMCFG [R/W] 00000000	Clock Monitor
$\begin{aligned} & 0004 \mathrm{~B} 0_{\mathrm{H}}, \\ & 0004 \mathrm{~B} 4_{\mathrm{H}} \end{aligned}$	Reserved				Reserved

CY91460N Series

Address	Register				Block
	+0	+1	+2	+3	
$0004 \mathrm{B8}{ }_{\mathrm{H}}$	CMPR [R/W]$--000010 \quad 11111101$		Reserved	$\begin{aligned} & \text { CMCR [R/W] } \\ & -001--00 \end{aligned}$	Clock Modulator
$0004 \mathrm{BC}_{\mathrm{H}}$	$\begin{gathered} \hline \text { CMT1 [R/W] } \\ 00000000 \quad 1--0000 \end{gathered}$		$\begin{gathered} \text { CMT2 [R/W] } \\ --000000 \quad--000000 \end{gathered}$		
$0^{0004 C 0}{ }_{H}$	CANPRE [R/W] 00000000	CANCKD [R/W] - - 00-- - -	Reserved		CAN Clock Control
$0^{0004 C 4 H}$	Reserved	LVDET [R/W]	HWWDE [R/W] ----00	HWWD [R/W, W] 00011000	Low-voltage Detection
$0004 \mathrm{C} 8_{\mathrm{H}}$	$\begin{gathered} \hline \text { OSCRH [R/W] } \\ 000--001 \end{gathered}$	$\begin{gathered} \hline \text { OSCRL [R/W] } \\ ----000 \end{gathered}$	Reserved		Main-Oscillation Stabilization Timer
$0004 \mathrm{CC} \mathrm{C}_{\mathrm{H}}$	Reserved				
$\begin{gathered} 0004 \mathrm{DO} \\ \text { to } \\ 0007 \mathrm{~F}_{\mathrm{H}} \end{gathered}$	Reserved				Reserved
$0007 \mathrm{FC} \mathrm{C}_{\mathrm{H}}$	Reserved	MODR [W] XXXXXXXX	Reserved		Mode Register
$\begin{aligned} & 000800_{\mathrm{H}} \\ & \text { to } \\ & 000 \mathrm{CFC}_{\mathrm{H}} \end{aligned}$	Reserved				Reserved
$\begin{aligned} & \mathrm{O}^{000 \mathrm{D} 00_{\mathrm{H}}} \\ & \text { to } \\ & 000 \mathrm{D} 08_{\mathrm{H}} \end{aligned}$	Reserved				R-bus Port Data Direct Read Register
$0^{000 D 0} C_{H}$	Reserved		PDRD14 [R] --- XXXX	PDRD15 [R] --- XXXX	
000D10 ${ }_{\text {H }}$	Reserved	PDRD17 [R] XXXXXXXX	Reserved		
000D14H	$\begin{aligned} & \hline \text { PDRD20 [R] } \\ & \text { - XXX- XXX } \end{aligned}$	$\begin{aligned} & \hline \text { PDRD21 [R] } \\ & \text { - XXX- XXX } \end{aligned}$	$\begin{aligned} & \text { PDRD22 [R] } \\ & ----X X X X \end{aligned}$	Reserved	
000D18 ${ }_{\text {H }}$	PDRD24 [R] XXXXXXXX	Reserved			
$0^{000 D 1 C}{ }_{\text {H }}$	Reserved	$\begin{aligned} & \text { PDRD29 [R] } \\ & \text { XXXXXXX } \end{aligned}$	Reserved		
$000 \mathrm{D} 20_{\mathrm{H}}$	Reserved				
$\begin{aligned} & \text { 000D24 } \\ & \text { to } \\ & 000 \mathrm{D} 3 \mathrm{C}_{\mathrm{H}} \end{aligned}$	Reserved				Reserved

CY91460N Series

Address	Register				Block
	+0	+1	+2	+3	
$\begin{gathered} 000 \mathrm{D} 40_{\mathrm{H}} \\ \text { to } \\ 000 \mathrm{D} 48_{\mathrm{H}} \end{gathered}$	Reserved				R-bus Port Direction Register
$000 \mathrm{D} 4 \mathrm{C}_{\mathrm{H}}$	Reserved		DDR14 [R/W]	$\begin{gathered} \text { DDR15 [R/W] } \\ ---0000 \end{gathered}$	
$0^{000 D 50}{ }_{H}$	Reserved	DDR17 [R/W] 00000000	Reserved		
$000 \mathrm{D} 54_{\mathrm{H}}$	$\begin{gathered} \text { DDR20 [R/W] } \\ -000-000 \end{gathered}$	$\begin{aligned} & \text { DDR21 [R/W] } \\ & -000-000 \end{aligned}$	DDR22 [R/W] ---0000	Reserved	
$000 \mathrm{D} 58_{\mathrm{H}}$	DDR24 [R/W] 00000000	Reserved			
$0^{000 D 5} \mathrm{C}_{\mathrm{H}}$	Reserved	$\begin{aligned} & \text { DDR29 [R/W] } \\ & 00000000 \end{aligned}$	Reserved		
000D60 ${ }_{\text {H }}$	Reserved				
$\begin{aligned} & \hline 0^{000 D 64}{ }_{H} \\ & \text { to } \\ & 000 \mathrm{D} 7 \mathrm{C}_{\mathrm{H}} \end{aligned}$	Reserved				Reserved
$000 \mathrm{D} 80_{\mathrm{H}}$ to $000 \mathrm{D} 88_{\mathrm{H}}$	Reserved				R-bus Port Function Register
$000 \mathrm{D} 8 \mathrm{C}_{\mathrm{H}}$	Reserved		$\begin{gathered} \text { PFR14 [R/W] } \\ ---0000 \end{gathered}$	PFR15 [R/W] ---0000	
$0^{000 D 90}{ }_{H}$	Reserved	PFR17 [R/W] 00000000	Reserved		
$0^{000 D 94}{ }_{H}$	$\begin{gathered} \text { PFR20 [R/W] } \\ -000-000 \end{gathered}$	$\begin{aligned} & \text { PFR21 [R/W] } \\ & -000-000 \end{aligned}$	$\begin{aligned} & \text { PFR22 [R/W] } \end{aligned}$	Reserved	
$000 \mathrm{D} 98_{\mathrm{H}}$	$\begin{gathered} \hline \text { PFR24 [R/W] } \\ 00000000 \end{gathered}$	Reserved			
$000 \mathrm{D9C} \mathrm{H}_{\mathrm{H}}$	Reserved	$\begin{gathered} \text { PFR29 [R/W] } \\ 00000000 \end{gathered}$	Reserved		
000 DAO H	Reserved				
$\begin{aligned} & \text { 000DA4 }{ }_{H} \text { to } \\ & 000 \mathrm{DBC}_{\mathrm{H}} \end{aligned}$	Reserved				Reserved
$\begin{aligned} & 000 \mathrm{DCO} \\ & \mathrm{H} \\ & \text { to } 000 \mathrm{DC} 8_{\mathrm{H}} \end{aligned}$	Reserved				R-bus Extension Port
$000 \mathrm{DCC}_{\mathrm{H}}$	Reserved		$\begin{gathered} \hline \text { EPFR14 [R/W] } \\ ---0000 \end{gathered}$	EPFR15 [R/W] $\text { - - - - } 0000$	Function Register
$000 \mathrm{DD0} \mathrm{H}$	Reserved				R-bus Extension Port Function Register
$0^{000 D D 4}{ }_{H}$	$\begin{gathered} \text { EPFR20 [R/W] } \\ -000-000 \end{gathered}$	$\begin{gathered} \text { EPFR21 [R/W] } \\ -0-\mathrm{-}-\mathrm{o}-\mathrm{-} \end{gathered}$			
$0^{000 D D 8}{ }_{H}$	Reserved				
$0^{000 D D C}{ }_{H}$	Reserved				
$0^{000 D E 0}{ }_{H}$	Reserved				
$\begin{aligned} & \text { O00DE4 }{ }_{H} \\ & \text { to } \\ & 000 \mathrm{DFC}_{\mathrm{H}} \end{aligned}$	Reserved				Reserved

CY91460N Series

Address	Register				Block
	+0	+1	+2	+3	
$000 \mathrm{E} 00_{\mathrm{H}}$ to $000 \mathrm{E} 08_{\mathrm{H}}$	Reserved				R-bus Port Output Drive Select Register
$0^{000 E 0 C}{ }_{H}$	Reserved		$\begin{gathered} \text { PODR14 [R/W] } \\ ---0000 \end{gathered}$	$\begin{gathered} \text { PODR15 [R/W] } \\ ---0000 \end{gathered}$	
$0^{000 E 10}{ }_{H}$	Reserved	$\begin{gathered} \text { PODR17 [R/W] } \\ 00000000 \end{gathered}$	Reserved		
$000 \mathrm{E} 14^{\text {H }}$	$\begin{aligned} & \text { PODR20 }[\mathrm{R} / \mathrm{W}] \\ & -000-000 \end{aligned}$	$\begin{aligned} & \text { PODR21 [R/W] } \\ & \text { - 000-000 } \end{aligned}$	$\begin{gathered} \text { PODR22 [R/W] } \\ ---0000 \end{gathered}$	Reserved	
$000 \mathrm{E} 1^{\text {H }}$	$\begin{gathered} \text { PODR24 [R/W] } \\ 00000000 \end{gathered}$	Reserved			
$000 \mathrm{E} \mathrm{C}_{\mathrm{H}}$	Reserved	$\begin{gathered} \hline \text { PODR29 [R/W] } \\ 00000000 \end{gathered}$	Reserved		
$000 \mathrm{E} 20_{\mathrm{H}}$	Reserved				
$\begin{aligned} & \text { 000E24 } \\ & \text { to } \\ & 000 \mathrm{E} 3 \mathrm{C}_{\mathrm{H}} \end{aligned}$	Reserved				Reserved
$000 E 40_{H}$ to $000 \mathrm{E} 48_{\mathrm{H}}$	Reserved				R-bus Pin Input Level Select Register
$000 \mathrm{E} 4 \mathrm{C}_{\mathrm{H}}$	Reserved		PILR14 [R/W] $\text { - - - - } 0000$	PILR15 [R/W] $\text { - - - } 0000$	
$000 \mathrm{E} 50_{\mathrm{H}}$	Reserved	PILR17 [R/W] 00000000	Reserved		
000E54 ${ }_{\text {H }}$	$\begin{gathered} \hline \text { PILR20 [R/W] } \\ -000-000 \end{gathered}$	$\begin{gathered} \text { PILR21 [R/W] } \\ -000-000 \end{gathered}$	$\begin{gathered} \text { PILR22 [R/W] } \\ ---0000 \end{gathered}$	Reserved	
$000 \mathrm{E} 58_{\mathrm{H}}$	$\begin{aligned} & \hline \text { PILR24 [R/W] } \\ & 00000000 \end{aligned}$	Reserved			
$000 \mathrm{E} 5 \mathrm{C}_{\mathrm{H}}$	Reserved	$\begin{aligned} & \text { PILR29 [R/W] } \\ & 00000000 \end{aligned}$	Reserved		
$000 \mathrm{E} 60_{\mathrm{H}}$	Reserved				
$\begin{aligned} & 0^{000 E 64} \\ & \text { to } \\ & 000 E 7 C_{H} \end{aligned}$	Reserved				Reserved
	Reserved				R-bus Port Extra Input Level Select Register
$000 \mathrm{E} 8 \mathrm{C}_{\mathrm{H}}$	Reserved		$\begin{gathered} \text { EPILR14 [R/W] } \\ ---0000 \end{gathered}$	$\begin{gathered} \text { EPILR15 [R/W] } \\ ---0000 \end{gathered}$	
$000 \mathrm{E} 90_{\mathrm{H}}$	Reserved	$\begin{gathered} \text { EPILR17 [R/W] } \\ 00000000 \end{gathered}$	Reserved		
$0^{000 E 94}{ }_{\text {H }}$	$\begin{aligned} & \text { EPILR20 [R/W] } \\ & -000-000 \end{aligned}$	$\begin{aligned} & \text { EPILR21 [R/W] } \\ & -000-000 \end{aligned}$	$\begin{gathered} \text { EPILR22 [R/W] } \\ ---0000 \end{gathered}$	Reserved	
$000 \mathrm{E} 98_{\mathrm{H}}$	$\begin{gathered} \text { EPILR24 [R/W] } \\ 00000000 \end{gathered}$	Reserved			
$\begin{aligned} & 0_{000 E 9 C_{H}}, \\ & 000 \mathrm{EAO}_{\mathrm{H}} \end{aligned}$	Reserved				

Address	Register				Block
	+0	+1	+2	+3	
$\begin{aligned} & \text { 000EA4 }{ }_{H} \text { to } \\ & 000 E B C_{H} \end{aligned}$	Reserved				Reserved
$\begin{aligned} & 000 E C 0_{\mathrm{H}} \\ & \text { to } \\ & 000 \mathrm{EC} 8_{\mathrm{H}} \end{aligned}$	Reserved				R-bus Port Pull-up/down Enable Register
$0^{000 E C C} H_{H}$	Reserved		$\begin{aligned} & \text { PPER14 [R/W] } \\ & ---0000 \end{aligned}$	$\begin{aligned} & \text { PPER15 [R/W] } \\ & ---0000 \end{aligned}$	
$0^{000 E D O}{ }_{H}$	Reserved	$\begin{gathered} \hline \text { PPER17 [R/W] } \\ 00000000 \end{gathered}$	Reserved		
$0^{000 E D 4}{ }_{H}$	$\begin{gathered} \text { PPER20 [R/W] } \\ -000-000 \end{gathered}$	$\begin{gathered} \text { PPER21 [R/W] } \\ -000-000 \end{gathered}$	$\begin{gathered} \text { PPER22 [R/W] } \\ ---0000 \end{gathered}$	Reserved	
$0^{000 E D 8}{ }_{H}$	PPER24 [R/W] 00000000	Reserved			
$0^{000 E D C}{ }_{H}$	Reserved	PPER29 [R/W] 00000000	Reserved		
$000 \mathrm{EE} 0_{\mathrm{H}}$	Reserved				
$\begin{aligned} & \text { 000EE } 4_{H} \\ & \text { to } \\ & 000 \mathrm{EFC}_{\mathrm{H}} \end{aligned}$	Reserved				Reserved
$\begin{aligned} & \text { OOOFOO }_{H} \\ & \text { to } \\ & 000 \mathrm{FO} \\ & \hline \end{aligned}$	Reserved				R-bus Port Pull-up/down ControlRegister
$000 \mathrm{FOC} \mathrm{H}_{\mathrm{H}}$	Reserved		$\begin{gathered} \hline \text { PPCR14 [R/W] } \\ ---1111 \end{gathered}$	$\begin{gathered} \hline \text { PPCR15 [R/W] } \\ ---1111 \end{gathered}$	R-bus Port Pull-up/down Control Register
$0^{000 F 10}{ }_{\text {H }}$	Reserved	PPCR17 [R/W] 11111111	Reserved		
000F14H	$\begin{gathered} \text { PPCR20 [R/W] } \\ -111-111 \end{gathered}$	$\begin{gathered} \hline \text { PPCR21 [R/W] } \\ -111-111 \end{gathered}$	$\begin{gathered} \text { PPCR22 [R/W] } \\ ---1111 \end{gathered}$	Reserved	
$0^{000 F 18}{ }^{\text {H }}$	$\begin{gathered} \hline \text { PPCR24 [R/W] } \\ 11111111 \end{gathered}$	Reserved			
$000 \mathrm{~F} 1 \mathrm{C}_{\mathrm{H}}$	Reserved	$\begin{gathered} \text { PPCR29 [R/W] } \\ 11111111 \end{gathered}$			
000F20 ${ }_{\text {H }}$	Reserved				
$\begin{aligned} & \text { 000F24H } \\ & \text { to } \\ & 000 \mathrm{~F} 3 \mathrm{C}_{\mathrm{H}} \end{aligned}$	Reserved				Reserved

CY91460N Series

Address	Register				Block
	+0	+1	+2	+3	
$0^{001000}{ }_{H}$	DMASAO [R/W] XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				DMAC
$0^{001004}{ }_{\text {H }}$	DMADA0 [R/W] XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				
$0^{001008}{ }_{\text {H }}$	DMASA1 [R/W] XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				
$0_{0100}{ }_{H}$	DMADA1 [R/W] XXXXXXXX $X X X X X X X X X X X X X X X X ~ X X X X X X X X ~$				
$\mathbf{0 0 1 0 1 0 ~}_{H}$	DMASA2 [R/W] XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				
$0^{001014}{ }_{\text {H }}$	DMADA2 [R/W] XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				
$0^{001018}{ }_{\text {H }}$	DMASA3 [R/W] XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				
$0^{00101}{ }^{\text {H }}$	DMADA3 [R/W] XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				
$0^{001020}{ }_{H}$	DMASA4 [R/W] XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				
$0^{001024}{ }_{\text {H }}$	DMADA4 [R/W] XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				
$\begin{aligned} & 001028_{\mathrm{H}} \\ & \text { to } \\ & 006 \mathrm{FFC}_{\mathrm{H}} \end{aligned}$	Reserved				Reserved
$0^{007000}{ }_{H}$	FMCS [R/W] 01101000	$\begin{gathered} \hline \text { FMCR [R/W] } \\ ----0000 \end{gathered}$	FCHCR [R/W] ----00 10000011		Flash Memory/ I-Cache Control Register
$0^{007004}{ }_{\text {H }}$	1111		FMWT2 [R/W] $-101---$	FMPS [R/W] ---000	
$0^{007008}{ }_{H}$	FMAC [R] -- - 000000000000000000000				
$0^{00700 C}{ }_{H}$	FCHAO [R/W]-------00000000000000000000000				I-Cache Non-cacheable area setting Register
$0^{007010}{ }_{H}$	FCHA1 [R/W]------00000000000000000000000				
$\begin{aligned} & \text { 007014 } \\ & \text { to } \\ & \text { to } \\ & \text { OFFC } \end{aligned}$	Reserved				Reserved
$\begin{aligned} & \text { OOB000 } \\ & \text { to } \\ & \text { OOBFFC }_{H} \end{aligned}$	BI-ROM size is 4 Kbytes : $00 \mathrm{B000}{ }_{\mathrm{H}}$ to $00 \mathrm{BFFF}_{\mathrm{H}}$				BI-ROM 4 Kbytes
$\begin{aligned} & 00 \mathrm{CO000} \\ & \text { to } \\ & \text { to } \\ & 00 \mathrm{C} 3 \mathrm{FC}_{\mathrm{H}} \end{aligned}$	Reserved				Reserved

CY91460N Series

CY91460N Series

Address	Register		Block
	+0	+2	
$00 \mathrm{C} 440_{\mathrm{H}}$	IF2CREQ4 [R/W] 0000000000000001	IF2CMSK4 [R/W] 0000000000000000	CAN 4 IF2 Register
$0^{00 C 444}{ }_{H}$	IF2MSK24 [R/W] 1111111111111111	IF2MSK14 [R/W] 1111111111111111	
$00 \mathrm{C} 448_{\mathrm{H}}$	IF2ARB24 [R/W] $00000000 \quad 00000000$	IF2ARB14 [R/W] 0000000000000000	
$00 \mathrm{C} 44 \mathrm{C}_{\mathrm{H}}$	IF2MCTR4 [R/W] 0000000000000000	Reserved	
$00 \mathrm{C} 450_{\mathrm{H}}$	IF2DTA14 [R/W] 0000000000000000	IF2DTA24 [R/W] 0000000000000000	
$00 \mathrm{C} 454_{\mathrm{H}}$	IF2DTB14 [R/W] 0000000000000000	IF2DTB24 [R/W] 0000000000000000	
$\begin{aligned} & 00 \mathrm{C} 458_{\mathrm{H}}, \\ & 00 \mathrm{C} 45 \mathrm{C}_{\mathrm{H}} \end{aligned}$	Reserved		
$00 \mathrm{C} 460_{\mathrm{H}}$	IF2DTA24 [R/W] 0000000000000000	IF2DTA14 [R/W] 0000000000000000	
$00 \mathrm{C} 464_{\mathrm{H}}$	IF2DTB24 [R/W] 0000000000000000	IF2DTB14 [R/W] 0000000000000000	
$\begin{aligned} & 00 \mathrm{C} 468_{\mathrm{H}} \\ & \text { to } \\ & 00 \mathrm{C} 47 \mathrm{C}_{\mathrm{H}} \end{aligned}$	Reserved		
$00 \mathrm{C} 480_{\mathrm{H}}$	TREQR24 [R] 0000000000000000	TREQR14 [R] 0000000000000000	CAN 4 Status Flags
$00 \mathrm{C} 484_{\mathrm{H}}$	TREQR44 [R] 0000000000000000	TREQR34 [R] 0000000000000000	
$00 \mathrm{C} 488{ }_{\mathrm{H}}$	TREQR64 [R] 0000000000000000		
$0^{00 C 48 C H}$	TREQR84 [R] 0000000000000000		
$00 \mathrm{C} 490_{\mathrm{H}}$	NEWDT24 [R] $00000000 \quad 00000000$		
$00 \mathrm{C} 494_{\mathrm{H}}$	NEWDT44 [R] 0000000000000000	NEWDT34 [R] 0000000000000000	

CY91460N Series

CY91460N Series

Address	Register				Block
	+0	+1	+2	+3	
00C524H	IF1DTB15 [R/W] 0000000000000000		IF1DTB25 [R/W] 0000000000000000		CAN 5 IF1 Register
$\begin{aligned} & 0_{00 C 528_{H}} \\ & 00 \mathrm{C} 52 \mathrm{C}_{\mathrm{H}} \end{aligned}$	Reserved				
$0^{00 C 530}{ }_{H}$	IF1DTA25 [R/W] 0000000000000000		IF1DTA15 [R/W]$00000000 \quad 00000000$		
$0^{00 C 534 H}$	IF1DTB25 [R/W]0000000000000000		IF1DTB15 [R/W]$00000000 \quad 00000000$		
$\begin{aligned} & 0_{00 C 538_{\mathrm{H}}} \\ & 00 \mathrm{C} 5 \mathrm{C}_{\mathrm{H}} \end{aligned}$	Reserved				
$00 \mathrm{C} 540_{\mathrm{H}}$	IF2CREQ5 [R/W] 0000000000000001		IF2CMSK5 [R/W] 0000000000000000		CAN 5 IF2 Register
$0^{00 C 544 H}$	$\begin{aligned} & \text { IF2MSK25 [R/W] } \\ & 11111111 \quad 11111111 \end{aligned}$		IF2MSK15 [R/W] 1111111111111111		
$0^{00 C 548 \%}$	IF2ARB25 [R/W]$00000000 \quad 00000000$		IF2ARB15 [R/W] 0000000000000000		
$00 \mathrm{C} 54 \mathrm{C}_{\mathrm{H}}$	IF2MCTR5 [R/W] 0000000000000000		Reserved		
$00 \mathrm{C} 550_{\mathrm{H}}$	$\begin{aligned} & \text { IF2DTA } \\ & 00000000 \end{aligned}$	$\begin{aligned} & 5[R / W] \\ & 00000000 \end{aligned}$		$\begin{aligned} & 25[R / W] \\ & 00000000 \end{aligned}$	
$00 \mathrm{C} 554_{\mathrm{H}}$	$\begin{array}{r} \text { IF2DTB } \\ 00000000 \\ \hline \end{array}$	$\begin{aligned} & 5[R / W] \\ & 00000000 \end{aligned}$		$\begin{aligned} & 25 \text { [R/W] } \\ & 00000000 \end{aligned}$	
$\begin{aligned} & 00 \mathrm{C} 558_{\mathrm{H}}, \\ & 00 \mathrm{C} 55 \mathrm{C}_{\mathrm{H}} \end{aligned}$	Reserved				
$00 \mathrm{C} 560_{\mathrm{H}}$	IF2DTA25 [R/W] 0000000000000000		IF2DTA15 [R/W] 0000000000000000		
$0^{00 C 564 H}$	IF2DTB25 [R/W] 0000000000000000		IF2DTB15 [R/W] 0000000000000000		
$\begin{aligned} & 00 \mathrm{C} 568_{\mathrm{H}} \\ & \text { to } \\ & 00 \mathrm{C} 57 \mathrm{C}_{\mathrm{H}} \end{aligned}$	Reserved				

CY91460N Series

CY91460N Series

Address	Register						Block
	+0		+1	+2		+3	
$0^{00 F 000}{ }_{H}$	$\begin{array}{lll} \hline \text { BCTRL } & {[R / W]} & \\ -----11111100 & 00000000 \end{array}$						EDSU / MPU
$0^{00 F 004}{ }_{H}$	$\begin{array}{lll} \hline \text { BSTAT } & {[R / W]} & \\ ---000 & 00000000 \quad 10--0000 \end{array}$						
$00 \mathrm{FO} 08_{\mathrm{H}}$	BIAC $[R]$ 00000000 00000000 00000000 00000000						
${ }^{00} \mathrm{FOOC}_{\mathrm{H}}$	BOAC $[\mathrm{R}]$ 00000000 00000000 000000000 00000000						
$0^{00 F 010}{ }_{H}$	BIRQ $[R / W]$ 00000000 00000000 00000000 00000000						
$\begin{gathered} \text { 00F014 } \\ \text { to } \\ 00 \mathrm{FO} \mathrm{C}_{\mathrm{H}} \\ \hline \end{gathered}$	Reserved						
$0^{00 F 020}{ }_{H}$	BCRO $[R / W]$$-\cdots----00000000000000000000000$						
$00 \mathrm{FO24}{ }_{\text {H }}$	BCR1 [R/W]-------000000000000000000000000						
$0^{00 F 028}{ }_{\text {H }}$							
$00 \mathrm{FO2C} \mathrm{C}_{\mathrm{H}}$	BCR3 [R/W]------00000000000000000000000						
$\begin{gathered} 00 \mathrm{FO3O} \\ \text { to } \\ \text { to } \\ 00 \mathrm{~F} 03 \mathrm{C}_{\mathrm{H}} \end{gathered}$	Reserved						
$\begin{aligned} & \text { 00F040 } \\ & \text { to } \\ & 00 \mathrm{~F} 07 \mathrm{C}_{\mathrm{H}} \end{aligned}$	Reserved						Reserved
$0^{00 F 080}{ }_{H}$							EDSU / MPU
$0^{00 F 084}{ }_{H}$		XXXXXXXX	$\begin{array}{r} \text { BAD1 } \\ \mathrm{XXXXXXX} \end{array}$	$\begin{aligned} & {[R / W]} \\ & X X X X X X X \end{aligned}$	xxxxxx		
$00 \mathrm{FO88} \mathrm{H}$		XXXXXXXX	$\begin{array}{r} \text { BAD2 } \\ \mathrm{XXXXXXXX} \end{array}$	$\begin{aligned} & {[R / W]} \\ & X X X X X X X X \end{aligned}$	XXXXXX)		
$00 \mathrm{~F} 08 \mathrm{C}_{\mathrm{H}}$		XxXXXXXX	$\begin{array}{r} \text { BAD3 } \\ \mathrm{XXXXXXXX} \end{array}$	$\begin{aligned} & {[R / W]} \\ & X X X X X X X \end{aligned}$	XXXXXX		
$0^{00 F 090}{ }_{H}$		XXXXXXXX	$\begin{array}{r} \text { BAD4 } \\ \mathrm{XXXXXXX} \end{array}$	$\begin{aligned} & {[R / W]} \\ & X X X X X X X \end{aligned}$	XXXXXX		
$0^{00 F 094}{ }_{H}$		XXXXXXXX	$\begin{array}{r} \text { BAD5 } \\ \mathrm{XXXXXXX} \end{array}$	$\begin{aligned} & {[R / W]} \\ & X X X X X X X \end{aligned}$	XXXXXX		
$00 \mathrm{FO98}{ }_{\mathrm{H}}$		XXXXXXXX	$\begin{array}{r} \text { BAD6 } \\ \text { XXXXXXX } \end{array}$	$\begin{aligned} & {[R / W]} \\ & X X X X X X X X \end{aligned}$	XXXXXX		
$0^{00 F 09 C}{ }_{H}$		XXXXXXXX	$\begin{array}{r} \text { BAD7 } \\ \text { XXXXXXX } \end{array}$	$\begin{aligned} & {[R / W]} \\ & X X X X X X X \end{aligned}$	XXXXXX		
$0^{00 F O A 0}{ }_{H}$							

CY91460N Series

1. The lower 16 bits (DTC15 to DTC0) of DMACA0 to DMACA4 cannot be accessed in bytes

14. Interrupt Source Table

Interrupt source	Interrupt number		Interrupt level		Interrupt vector		Resource number ${ }^{[1]}$
	Decimal	Hexadecimal	Setting register	Register address	Offset	Default vector address	
Reset	0	00	-	-	$3 \mathrm{FC}_{\mathrm{H}}$	000 FFFFC ${ }_{\text {H }}$	-
Mode vector	1	01	-	-	$3 \mathrm{~F} 8_{\mathrm{H}}$	000 FFFF8 ${ }_{\text {H }}$	-
System reserved	2	02	-	-	$3 \mathrm{~F} 4_{\mathrm{H}}$	000 FFFF4 ${ }_{H}$	-
System reserved	3	03	-	-	$3 \mathrm{FO}_{\mathrm{H}}$	$000 \mathrm{FFFF} 0_{\mathrm{H}}$	-
System reserved	4	04	-	-	$3 \mathrm{ECH}_{\mathrm{H}}$	000 FFFEC ${ }_{\text {H }}$	-
CPU supervisor mode (INT \#5 instruction) ${ }^{[2]}$	5	05	-	-	$3 \mathrm{E} 8_{\mathrm{H}}$	000 FFFE8 ${ }_{\text {H }}$	-
Memory protection exception ${ }^{[2]}$	6	06	-	-	$3 \mathrm{E} 4_{\mathrm{H}}$	000 FFFE 4_{H}	-
System reserved	7	07	-	-	3 EO H	$000 \mathrm{FFFE} 0_{\mathrm{H}}$	-
System reserved	8	08	-	-	$3 \mathrm{DC}_{\mathrm{H}}$	000 FFFDC ${ }_{\mathrm{H}}$	-
System reserved	9	09	-	-	$3 \mathrm{D} 8_{\mathrm{H}}$	000FFFD88 ${ }_{\text {H }}$	-
System reserved	10	0A	-	-	$3 \mathrm{D} 4_{\mathrm{H}}$	$000 \mathrm{FFFD} 4_{\mathrm{H}}$	-
System reserved	11	OB	-	-	$3 \mathrm{DO}_{\mathrm{H}}$	000 FFFD0 ${ }_{\text {H }}$	-
System reserved	12	OC	-	-	$3 \mathrm{CC}_{\mathrm{H}}$	$000 \mathrm{FFFCC} \mathrm{H}_{\mathrm{H}}$	-
System reserved	13	OD	-	-	$3 \mathrm{C} 8_{\mathrm{H}}$	$000 \mathrm{FFFC8} \mathrm{H}_{\mathrm{H}}$	-
Undefined instruction exception	14	OE	-	-	3 C 4 H	$000 \mathrm{FFFC} 4_{\mathrm{H}}$	-
NMI request	15	OF	F_{H} fixed		$3 \mathrm{CO}_{\mathrm{H}}$	000 FFFCO H	-
External interrupt 0	16	10	ICR00	440_{H}	$3 \mathrm{BC}_{\mathrm{H}}$	000 FFFBC H	0, 16
External interrupt 1	17	11			$3 \mathrm{~B} 8_{\mathrm{H}}$	$000 \mathrm{FFFB} 8_{\mathrm{H}}$	1,17
External interrupt 2	18	12	ICR01	441_{H}	$3 \mathrm{~B} 4_{\mathrm{H}}$	$000 \mathrm{FFFB} 4_{\mathrm{H}}$	2, 18
External interrupt 3	19	13			$3 \mathrm{BO}_{\mathrm{H}}$	$000 \mathrm{FFFB} 0_{\mathrm{H}}$	3, 19
External interrupt 4	20	14	ICR02	$442_{\text {H }}$	$3 \mathrm{AC}_{\mathrm{H}}$	000 FFFAC H	20
External interrupt 5	21	15			$3 \mathrm{~A} 8_{\mathrm{H}}$	$000 \mathrm{FFFA} 8_{\mathrm{H}}$	21
External interrupt 6	22	16	ICR03	443_{H}	$3 \mathrm{~A} 4_{\mathrm{H}}$	$000 \mathrm{FFFA} 4_{\mathrm{H}}$	22
External interrupt 7	23	17			$3 \mathrm{AO}_{\mathrm{H}}$	$000 \mathrm{FFFA} 0_{\mathrm{H}}$	23
System reserved	24	18	ICR04	$444^{\text {H }}$	$39 \mathrm{C}_{\mathrm{H}}$	$000 \mathrm{FFF9} 9 \mathrm{C}_{\mathrm{H}}$	-
System reserved	25	19			$398{ }_{H}$	$000 \mathrm{FFF98}{ }_{\mathrm{H}}$	-
System reserved	26	1A	ICR05	445_{H}	394_{H}	$000 \mathrm{FFF9} 9{ }_{H}$	-
System reserved	27	1B			390_{H}	$000 \mathrm{FFF} 90_{\mathrm{H}}$	-
External interrupt 12	28	1 C	ICR06	$446{ }_{H}$	$38 \mathrm{C}_{\mathrm{H}}$	$000 \mathrm{FFF} 8 \mathrm{C}_{\mathrm{H}}$	-
External interrupt 13	29	1D			388_{H}	$000 \mathrm{FFF} 88_{\mathrm{H}}$	-
System reserved	30	1E	ICR07	$447 \%^{\text {H }}$	384_{H}	$000 \mathrm{FFF} 84_{\mathrm{H}}$	-
System reserved	31	1F			380_{H}	$000 \mathrm{FFF} 80_{\mathrm{H}}$	-
Reload timer 0	32	20	ICR08	448_{H}	$37 \mathrm{C}_{\mathrm{H}}$	$000 \mathrm{FFF7} \mathrm{C}_{\mathrm{H}}$	4,32
Reload timer 1	33	21			378_{H}	000 FFF78 ${ }_{\text {H }}$	5, 33
Reload timer 2	34	22	ICR09	449 ${ }_{\text {H }}$	$374{ }_{H}$	$000 \mathrm{FFF7} 4_{\mathrm{H}}$	34
Reload timer 3	35	23			370_{H}	$000 \mathrm{FFF} 70_{\mathrm{H}}$	35
System reserved	36	24	ICR10	$44 \mathrm{~A}_{\mathrm{H}}$	$36 \mathrm{C}_{\mathrm{H}}$	$000 \mathrm{FFF6} \mathrm{C}_{\mathrm{H}}$	36
System reserved	37	25			368_{H}	$000 \mathrm{FFF} 68_{\mathrm{H}}$	37

Interrupt source	Interrupt number		Interrupt level		Interrupt vector		Resource number ${ }^{[1]}$
	Decimal	Hexadecimal	Setting register	Register address	Offset	Default vector address	
System reserved	38	26	ICR11	$44 \mathrm{~B}_{\mathrm{H}}$	364_{H}	$000 \mathrm{FFF64}{ }_{\mathrm{H}}$	38
Reload timer 7	39	27			360_{H}	$000 \mathrm{FFF} 60_{\mathrm{H}}$	39
Free-run timer 0	40	28	ICR12	$44 \mathrm{C}_{\mathrm{H}}$	$35 \mathrm{C}_{\mathrm{H}}$	$000 \mathrm{FFF} 5 \mathrm{C}_{\mathrm{H}}$	40
Free-run timer 1	41	29			358_{H}	000 FFF58 ${ }_{\text {H }}$	41
Free-run timer 2	42	2A	ICR13	$44 \mathrm{D}_{\mathrm{H}}$	354_{H}	$000 \mathrm{FFF} 54_{\mathrm{H}}$	42
Free-run timer 3	43	2B			$350_{\text {H }}$	$000 \mathrm{FFF} 50_{\mathrm{H}}$	43
System reserved	44	2 C	ICR14	$44 \mathrm{E}_{\mathrm{H}}$	$34 \mathrm{C}_{\mathrm{H}}$	$000 \mathrm{FFF} 4 \mathrm{C}_{\mathrm{H}}$	44
System reserved	45	2D			348_{H}	$000 \mathrm{FFF} 48_{\mathrm{H}}$	45
System reserved	46	2E	ICR15	$44 \mathrm{~F}_{\mathrm{H}}$	344_{H}	$000 \mathrm{FFF} 44_{\mathrm{H}}$	46
System reserved	47	2F			340_{H}	$000 \mathrm{FFF} 40_{\mathrm{H}}$	47
System reserved	48	30	ICR16	450^{H}	$33 \mathrm{C}_{\mathrm{H}}$	$000 \mathrm{FFF} 3 \mathrm{C}_{\mathrm{H}}$	-
System reserved	49	31			$33{ }^{\text {H }}$	$000 \mathrm{FFF} 38_{\mathrm{H}}$	-
System reserved	50	32	ICR17	$451^{\text {H }}$	334_{H}	$000 \mathrm{FFF} 34_{\mathrm{H}}$	-
System reserved	51	33			330_{H}	$000 \mathrm{FFF} 3 \mathrm{O}_{\mathrm{H}}$	-
CAN 4	52	34	ICR18	$45^{4} \mathrm{H}$	$32 \mathrm{C}_{\mathrm{H}}$	000 FFF2C ${ }_{\text {H }}$	-
CAN 5	53	35			328_{H}	000FFF28 ${ }_{\text {H }}$	-
LIN-USARTO RX	54	36	ICR19	453 H	324_{H}	$000 \mathrm{FFF} 24_{\mathrm{H}}$	6,48
LIN-USART0 TX	55	37			320_{H}	$000 \mathrm{FFF} 20_{\mathrm{H}}$	7,49
LIN-USART1 RX	56	38	ICR20	$4^{45}{ }_{H}$	$31 \mathrm{C}_{\mathrm{H}}$	$000 \mathrm{FFF} 1 \mathrm{C}_{\mathrm{H}}$	8, 50
LIN-USART1 TX	57	39			318_{H}	$000 \mathrm{FFF} 1^{18}$	9,51
LIN-USART2 RX	58	3A	ICR21	$455^{\text {H }}$	314_{H}	$000 \mathrm{FFF} 1^{\text {H }}$	52
LIN-USART2 TX	59	3B			310_{H}	$000 \mathrm{FFF} 1^{10} \mathrm{H}$	53
LIN-USART3 RX	60	3 C	ICR22	456_{H}	$30 \mathrm{C}_{\mathrm{H}}$	$000 \mathrm{FFFO} \mathrm{C}_{\mathrm{H}}$	54
LIN-USART3 TX	61	3D			308_{H}	$000 \mathrm{FFF} 08_{\mathrm{H}}$	55
System reserved	62	3E	ICR23 ${ }^{[3]}$	$457 ~ H ~_{\text {H }}$	304_{H}	$000 \mathrm{FFF} 04_{\mathrm{H}}$	-
Delayed interrupt	63	3F			300_{H}	$000 \mathrm{FFF} 00_{\mathrm{H}}$	-
System reserved ${ }^{[4]}$	64	40	(ICR24)	$\left(458{ }_{H}\right)$	$2 \mathrm{FC}_{\mathrm{H}}$	$000 \mathrm{FFEFC}_{\mathrm{H}}$	-
System reserved ${ }^{[4]}$	65	41			$2 \mathrm{~F} 8_{\mathrm{H}}$	000 FFEF8 ${ }_{H}$	-
System reserved	66	42	ICR25	459 ${ }_{\text {H }}$	$2 \mathrm{~F} 4_{\mathrm{H}}$	$000 \mathrm{FFEF} 4_{\mathrm{H}}$	10,56
System reserved	67	43			$2 \mathrm{FO}_{\mathrm{H}}$	$000 \mathrm{FFEF} 0_{\mathrm{H}}$	11, 57
System reserved	68	44	ICR26	$45 \mathrm{~A}_{\mathrm{H}}$	$2 \mathrm{EC} \mathrm{C}_{\mathrm{H}}$	000 FFEEC $_{\text {H }}$	12,58
System reserved	69	45			$2 \mathrm{E} 8_{\mathrm{H}}$	000FFEE8 ${ }_{\text {H }}$	13,59
System reserved	70	46	ICR27	$45 \mathrm{~B}_{\mathrm{H}}$	$2 \mathrm{E} 4_{\mathrm{H}}$	$000 \mathrm{FFEE} 4_{\mathrm{H}}$	60
System reserved	71	47			$2 \mathrm{E} 0_{\mathrm{H}}$	$000 \mathrm{FFEE} 0_{\mathrm{H}}$	61
System reserved	72	48	ICR28	$45 \mathrm{C}_{\mathrm{H}}$	$2 \mathrm{DC}_{\mathrm{H}}$	000 FFEDC $_{\mathrm{H}}$	62
System reserved	73	49			$2 \mathrm{D8} \mathrm{H}$	$0^{000 F F E D 8}{ }_{\text {H }}$	63
${ }^{2} \mathrm{C}$ C 2	74	4A	ICR29	$45 \mathrm{D}_{\mathrm{H}}$	$2 \mathrm{D} 4_{\mathrm{H}}$	$0^{000 F F E D 4}{ }_{H}$	-
$1^{2} \mathrm{C} 3$	75	4B			$2 \mathrm{DO}_{\mathrm{H}}$	000 FFEDO ${ }_{\text {H }}$	-

Interrupt source	Interrupt number		Interrupt level		Interrupt vector		Resource number ${ }^{[1]}$
	Decimal	Hexadecimal	Setting register	Register address	Offset	Default vector address	
System reserved	76	4C	ICR30	$45 \mathrm{E}_{\mathrm{H}}$	$2 \mathrm{CC}_{\mathrm{H}}$	000 FFECC ${ }_{H}$	64
System reserved	77	4D			$2 \mathrm{C} 8_{\mathrm{H}}$	$000 \mathrm{FFEC} 8_{\text {H }}$	65
System reserved	78	4E	ICR31	$45 \mathrm{~F}_{\mathrm{H}}$	$2 \mathrm{C} 4_{\mathrm{H}}$	$000 \mathrm{FFEC} 4_{\mathrm{H}}$	66
System reserved	79	4F			2 CO	$000 \mathrm{FFEC} 0_{\mathrm{H}}$	67
System reserved	80	50	ICR32	460_{H}	$2 \mathrm{BC}_{\mathrm{H}}$	$000 \mathrm{FFEBC}_{\mathrm{H}}$	68
System reserved	81	51			$2 \mathrm{~B} 8_{\mathrm{H}}$	000FFEB8 ${ }_{\text {H }}$	69
System reserved	82	52	ICR33	$461 H^{\text {H }}$	$2 \mathrm{~B} 4_{\mathrm{H}}$	000 FFEB4 ${ }_{\text {H }}$	70
System reserved	83	53			$2 \mathrm{B0} \mathrm{H}$	$000 \mathrm{FFEB} 0_{\mathrm{H}}$	71
System reserved	84	54	ICR34	$462 H^{\text {H }}$	$2 \mathrm{AC}_{\mathrm{H}}$	000 FFEAC $_{H}$	72
System reserved	85	55			$2 \mathrm{~A} 8_{\mathrm{H}}$	000FFEA8 ${ }_{\text {H }}$	73
System reserved	86	56	ICR35	463_{H}	$2 \mathrm{~A} 4_{\mathrm{H}}$	000 FFEA4 ${ }_{\text {H }}$	74
System reserved	87	57			$2 \mathrm{AO}_{\mathrm{H}}$	000FFEAOH	75
System reserved	88	58	ICR36	464^{4}	$29 \mathrm{C}_{\mathrm{H}}$	$0^{000 F F E 9}{ }_{\text {H }}$	76
System reserved	89	59			$298{ }_{\text {H }}$	$000 \mathrm{FFE} 98_{\text {H }}$	77
System reserved	90	5A	ICR37	465_{H}	$294{ }_{H}$	$000 \mathrm{FFE} 94_{\mathrm{H}}$	78
System reserved	91	5B			$290{ }_{\mathrm{H}}$	$000 \mathrm{FFE} 90_{\mathrm{H}}$	79
Input capture 0	92	5C	ICR38	$466 \%^{H}$	$28 \mathrm{C}_{\mathrm{H}}$	$000 \mathrm{FFE} 8 \mathrm{C}_{\mathrm{H}}$	80
Input capture 1	93	5D			288_{H}	$000 \mathrm{FFE} 88_{\mathrm{H}}$	81
Input capture 2	94	5E	ICR39	467_{H}	284_{H}	$000 \mathrm{FFE} 84_{\mathrm{H}}$	82
Input capture 3	95	5F			280_{H}	000 FFE80 ${ }_{\text {H }}$	83
System reserved	96	60	ICR40	$468^{\text {H }}$	$27 \mathrm{C}_{\mathrm{H}}$	$000 \mathrm{FFE} 7 \mathrm{C}_{\mathrm{H}}$	84
System reserved	97	61			$278{ }_{H}$	$000 \mathrm{FFE} 7^{\text {H }}$	85
System reserved	98	62	ICR41	469^{H}	$274{ }_{H}$	000 FFE74 ${ }_{\text {H }}$	86
System reserved	99	63			270_{H}	$000 \mathrm{FFE} 7^{\text {H }}$	87
Output compare 0	100	64	ICR42	$46 \mathrm{~A}_{\mathrm{H}}$	$26 \mathrm{C}_{\mathrm{H}}$	$000 \mathrm{FFE6} \mathrm{C}_{\mathrm{H}}$	88
Output compare 1	101	65			$268{ }_{\mathrm{H}}$	$000 \mathrm{FFE6} 8_{\mathrm{H}}$	89
Output compare 2	102	66	ICR43	$46 \mathrm{~B}_{\mathrm{H}}$	$264^{\text {H }}$	$000 \mathrm{FFE64}{ }_{\mathrm{H}}$	90
Output compare 3	103	67			260_{H}	000 FFE60 ${ }_{\text {H }}$	91
System reserved	104	68	ICR44	$46 \mathrm{C}_{\mathrm{H}}$	$25 \mathrm{C}_{\mathrm{H}}$	000 FFE5C ${ }_{\text {H }}$	92
System reserved	105	69			258	000 FFE58 ${ }_{\text {H }}$	93
System reserved	106	6A	ICR45	$46 \mathrm{D}_{\mathrm{H}}$	$254{ }_{H}$	$000 \mathrm{FFE} 54_{\mathrm{H}}$	94
System reserved	107	6B			$250{ }_{H}$	000 FFE50 ${ }_{\text {H }}$	95
System reserved	108	6 C	ICR46	$46 \mathrm{E}_{\mathrm{H}}$	$24 \mathrm{C}_{\mathrm{H}}$	$000 \mathrm{FFE} 4 \mathrm{C}_{\mathrm{H}}$	-
Phase Frequency modulator	109	6D			248_{H}	$000 \mathrm{FFE} 48_{\text {H }}$	-
System reserved	110	6E	ICR47 ${ }^{[4]}$	$46 \mathrm{~F}_{\mathrm{H}}$	244_{H}	000 FFE44 ${ }_{\text {H }}$	-
System reserved	111	6 F			240_{H}	000 FFE40 ${ }_{\text {H }}$	-
PPG0	112	70	ICR48	470_{H}	$23 \mathrm{C}_{\mathrm{H}}$	$0^{000 F F E 3 C}{ }_{H}$	15, 96
PPG1	113	71			$238{ }_{\text {H }}$	000 FFE38 ${ }_{\text {H }}$	97

Interrupt source	Interrupt number		Interrupt level		Interrupt vector		Resource number ${ }^{[1]}$
	Decimal	Hexadecimal	Setting register	Register address	Offset	Default vector address	
PPG2	114	72	ICR49	471_{H}	234_{H}	$000 \mathrm{FFE} 34_{\mathrm{H}}$	98
PPG3	115	73			230_{H}	$000 \mathrm{FFE} 30_{\mathrm{H}}$	99
PPG4	116	74	ICR50	472 H	22 CH	$000 \mathrm{FFE} 2 \mathrm{C}_{\mathrm{H}}$	100
PPG5	117	75			228_{H}	$000 \mathrm{FFE} 28_{\text {H }}$	101
PPG6	118	76	ICR51	473 H	2224^{H}	$000 \mathrm{FFE} 24_{\mathrm{H}}$	102
PPG7	119	77			220_{H}	000FFE20 ${ }_{\text {H }}$	103
System reserved	120	78	ICR52	$474{ }_{H}$	$21 \mathrm{C}_{\mathrm{H}}$	$000 \mathrm{FFE} 1^{\text {C }}$ H	104
System reserved	121	79			218_{H}	$000 \mathrm{FFE} 1^{\text {H }}$	105
System reserved	122	7A	ICR53	$475{ }_{\text {H }}$	$214{ }_{H}$	$000 \mathrm{FFE} 1^{\text {H }}$	106
System reserved	123	7B			210_{H}	$000 \mathrm{FFE} 1^{10}{ }_{\text {H }}$	107
System reserved	124	7 C	ICR54	$476{ }_{\text {H }}$	$20 \mathrm{C}_{\mathrm{H}}$	$000 \mathrm{FFE} 0 \mathrm{C}_{\mathrm{H}}$	108
System reserved	125	7D			$208{ }_{\text {H }}$	$000 \mathrm{FFE} 08_{\mathrm{H}}$	109
System reserved	126	7E	ICR55	477_{H}	$204{ }_{H}$	$000 \mathrm{FFE} 04_{\mathrm{H}}$	110
System reserved	127	7F			$200{ }_{H}$	$000 \mathrm{FFE} 00_{\mathrm{H}}$	111
Up/down counter 0	128	80	ICR56	478 ${ }_{\text {H }}$	$1 \mathrm{FC}_{\mathrm{H}}$	000 FFDFC H	-
Up/down counter 1	129	81			$1 \mathrm{~F} 8_{\mathrm{H}}$	000 FFDF8 ${ }_{\text {H }}$	-
System reserved	130	82	ICR57	479 ${ }_{\text {H }}$	$1 \mathrm{~F} 4_{\mathrm{H}}$	$000 \mathrm{FFDF} 4_{\mathrm{H}}$	-
System reserved	131	83			$1 \mathrm{FO}_{\mathrm{H}}$	000 FFDFO H	-
Real time clock	132	84	ICR58	$47 \mathrm{~A}_{\mathrm{H}}$	$1 \mathrm{EC}_{\mathrm{H}}$	$000 \mathrm{FFDEC}_{\mathrm{H}}$	-
Calibration unit	133	85			$1 \mathrm{E} 8_{\mathrm{H}}$	000FFDE8 ${ }_{\text {H }}$	-
A/D converter 0	134	86	ICR59	$47 \mathrm{~B}_{\mathrm{H}}$	$1 \mathrm{E} 4_{\mathrm{H}}$	$000 \mathrm{FFDE4}{ }_{\mathrm{H}}$	14, 112
System reserved	135	87			$1 \mathrm{EO}_{\mathrm{H}}$	$000 \mathrm{FFDE} 0_{\mathrm{H}}$	-
System reserved	136	88	ICR60	$47 \mathrm{C}_{\mathrm{H}}$	$1 \mathrm{DC}_{\mathrm{H}}$	000 FFDDC $_{H}$	-
System reserved	137	89			$1 \mathrm{D} 8_{\mathrm{H}}$	000 FFDD8 ${ }_{H}$	-
Low voltage detection	138	8A	ICR61	$47 \mathrm{D}_{\mathrm{H}}$	$1 \mathrm{D} 4_{\mathrm{H}}$	$000 \mathrm{FFDD4}{ }_{\mathrm{H}}$	-
System reserved	139	8B			$1 \mathrm{DO}_{\mathrm{H}}$	$0^{000 F F D D 0}{ }_{H}$	-
Time-base overflow	140	8C	ICR62	$47 \mathrm{E}_{\mathrm{H}}$	$1 \mathrm{CC}_{\mathrm{H}}$	$000 \mathrm{FFDCC}_{\mathrm{H}}$	-
PLL clock gear	141	8D			$1 \mathrm{C} 8_{\mathrm{H}}$	$0^{000 F F D C 8}{ }_{H}$	-
DMA controller	142	8E	ICR63	$47 \mathrm{~F}_{\mathrm{H}}$	$1 \mathrm{C}_{\mathrm{H}}$	$000 \mathrm{FFDC4} 4_{\mathrm{H}}$	-
Main OSC stability wait	143	8F			$1 \mathrm{CO}_{\mathrm{H}}$	$000 \mathrm{FFDC0} \mathrm{H}$	-
System reserved	144	90	-	-	1 BC H	000 FFDBC $_{H}$	-
Used by the INT instruction	$\begin{gathered} 145 \\ \text { to } \\ 255 \end{gathered}$	$\begin{aligned} & \hline 91 \\ & \text { to } \\ & \text { FF } \end{aligned}$	-	-	$\begin{gathered} 1 \mathrm{~B} 8_{\mathrm{H}} \\ \text { to } \\ 000_{\mathrm{H}} \end{gathered}$	$\begin{aligned} & \text { OOOFFDB8 }_{\mathrm{H}} \\ & \text { to } \\ & \text { 000FFCOO }_{\mathrm{H}} \end{aligned}$	-

1.The peripheral resources to which RN (Resource Number) is assigned are capable of being DMA transfer activation sources. In addition, RN respectively corresponds to an IS (Input Source) of the DMAC channel control register A(DMACAO to DMACA4), and the IS (Input Source) can be obtained by representing RN in a binary number and adding " 1 " to the head of it.
2.Memory Protection Unit (MPU) support
3.ICR23 can be switched to ICR47 by setting REALOS compatibility bit (address 0C03 ${ }_{\mathrm{H}}$ ISO[0]).
4.Used by REALOS

15. Electrical Characteristics

15.1 Absolute Maximum Rating

Parameter	Symbol	Rating		Unit	Remarks
		Min	Max		
Power supply voltage ${ }^{[1]}$	V_{CC}	$\mathrm{V}_{\text {SS }}-0.5$	$\mathrm{V}_{\text {SS }}+6.0$	V	
Analog power supply voltage ${ }^{[1]}$	$\mathrm{AV}_{\mathrm{CC}}$	$\mathrm{V}_{\text {SS }}-0.5$	$\mathrm{V}_{\text {SS }}+6.0$	V	[2]
Analog power supply voltage ${ }^{[1]}$	AVRH	$\mathrm{V}_{\text {SS }}-0.5$	$\mathrm{V}_{\text {SS }}+6.0$	V	[2]
Input voltage ${ }^{[1]}$	V_{1}	$\mathrm{V}_{\text {SS }}-0.3$	$\mathrm{V}_{\mathrm{CC}}+0.3$	V	[3]
Analog pin input voltage ${ }^{[1]}$	$\mathrm{V}_{\text {IA }}$	$\mathrm{V}_{\text {SS }}-0.3$	$\mathrm{AV}_{\mathrm{CC}}+0.3$	V	
Output voltage ${ }^{[1]}$	V_{O}	$\mathrm{V}_{\text {SS }}-0.3$	$\mathrm{V}_{\mathrm{CC}}+0.3$	V	[3]
Maximum clamp current	$\mathrm{I}_{\text {clamp }}$	- 2.0	+2.0	mA	[4]
Total maximum clamp current	$\Sigma \mid$ CLAMP	-	20	mA	[4]
"L" level maximum output current	l_{OL}	-	10	mA	[5]
"L" level average output current	lolav	-	4	mA	[6]
"L" level total maximum output current	$\Sigma \mathrm{l}_{\mathrm{OL}}$	-	100	mA	
"L" level total average output current	${ }^{\text {E }}$ OLAV	-	50	mA	[7]
"H" level maximum output current	I_{OH}	-	-10	mA	[5]
"H" level average output current	$\mathrm{I}_{\text {OHAV }}$	-	-4	mA	[6]
"H" level total maximum output current	$\Sigma^{\text {OH }}$	-	-100	mA	
"H" level total average output current	$\Sigma \mathrm{I}_{\text {OHAV }}$	-	-20	mA	[7]
Power consumption	P_{D}	-	700	mW	
Operation temperature	T_{A}	-40	+105	${ }^{\circ} \mathrm{C}$	When using $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$
		-40	+85	${ }^{\circ} \mathrm{C}$	When using $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
Storage temperature	Tstg	- 55	+ 125	${ }^{\circ} \mathrm{C}$	

1. The parameter is based on $\mathrm{V}_{\mathrm{SS}}=\mathrm{AV}_{\mathrm{SS}}=0.0 \mathrm{~V}$.
2. $A V_{C C}$ and $A V R H$ must not exceed $V_{C C}+0.3 \mathrm{~V}$, for example, at power on. $A V_{C C}$ must not exceed $V_{C C}$.
3. V_{I} and V_{O} must not exceed $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$. However, when the maximum value of the current to the input or the current from the input is limited by using outside parts, $\mathrm{I}_{\text {CLAMP }}$ ratings are applied in place of V_{I} ratings.
4.

■ Corresponding pins: Pin name P29_0 to P29_7, P24_0 to P24_7, P22_0 to P22_3, P20_0 to P20_2, P20_4 to P20_6, P15_0 to P15_3, P17_0 to P17_7, P21_0 to P21_2, P21_4 to P21_6, P14_0 to P14_3

■ Use within recommended operating conditions.
■ Use at DC voltage (current).
\square The $+B$ signal is an input signal exceeding $V_{C C}$ voltage. The $+B$ signal should always be applied by connecting a limiting resistor between the $+B$ signal and the microcontroller.

- The value of the limiting resistor should be set so that the current input to the microcontroller pin does not exceed rated values at any time regardless of instantaneously or constantly when the $+B$ signal is input.
\square Note that when the microcontroller drive current is low, such as in the low power consumption modes, the $+B$ input potential can increase the potential at the VCC pin via a protective diode, possibly affecting other devices.
\square Note that if the $+B$ signal is input when the microcontroller is off (not fixed at 0 V), since the power is supplied through the pin, the microcontroller may operate incompletely.
■ Note that if the $+B$ signal is input at power-on, since the power is supplied through the pin, the power supply voltage may become the voltage at which a power-on reset does not work.

■ Do not leave $+B$ input pins open.
"Note that analog input/output pins can input the + B signal only at using as a port.
5. Maximum output current is defined as the value of the peak current flowing through any one of the corresponding pins.
6. Average output current is defined as the value of the average current flowing through any one of the corresponding pins for a 100 ms period.
7. Total average output current is defined as the value of the average current flowing through all of the corresponding pins for a 100 ms period.

Figure 1. Sample Recommended Circuit :

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

15.2 Recommended Operating Conditions

$\left(\mathrm{V}_{\mathrm{SS}}=\mathrm{AV}_{\mathrm{SS}}=0.0 \mathrm{~V}\right)$

Parameter	Symbol	Value		Unit	Remarks
		Min	Max		
Power supply voltage	V_{Cc}	3.0	3.6	V	When using $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$
		4.5	5.5	V	When using $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
	$\mathrm{AV}_{\mathrm{CC}}$	3.0	3.6	V	When using $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$
		4.5	5.5	V	When using $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
Smoothing capacitor	C_{s}	$\begin{gathered} 4.7 \\ \text { (accuracy within } \pm 50 \% \text {) } \end{gathered}$		$\mu \mathrm{F}$	Use a ceramic capacitor or a capacitor that has the similar frequency characteristics. Use a capacitor with a capacitance greater than C_{S} as the smoothing capacitor on the VCC pin.
Operating temperature	T_{A}	-40	+105	${ }^{\circ} \mathrm{C}$	When using $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$
		-40	+85	${ }^{\circ} \mathrm{C}$	When using $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

15.3 DC Characteristics

$\left(\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}\right.$ to $3.6 \mathrm{~V} / 4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{AV} \mathrm{SS}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C} /-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Pin Name	Condition	Value			Unit	Remarks
				Min	Typ	Max		
"H" level input voltage	$\mathrm{V}_{\text {IHS }}$	Port pin	When CMOS hysteresis input type1 are selected	$0.7 \times \mathrm{V}_{\text {cc }}$	-	$\mathrm{V}_{\mathrm{CC}}+0.3$	V	
	$\mathrm{V}_{\text {IHC }}$	Port pin	When CMOS hysteresis input type2 are selected	$0.8 \times \mathrm{V}_{\text {cc }}$	-	$\mathrm{V}_{\mathrm{CC}}+0.3$	V	
	$\mathrm{V}_{\text {IHA }}$	Port pin	When Automotive inputs are selected	$0.8 \times \mathrm{V}_{\text {cc }}$	-	$\mathrm{V}_{\mathrm{CC}}+0.3$	V	
	$\mathrm{V}_{\text {IHT }}$	Port pin	When TTL input levels are selected	2.0	-	$\mathrm{V}_{\mathrm{CC}}+0.3$	V	
	$\mathrm{V}_{\mathrm{HH} 1}$	$\begin{gathered} \text { MD2 } \\ \text { to } \\ \text { MDO } \end{gathered}$	CMOS level input	$0.7 \times \mathrm{V}_{\text {cc }}$	-	$\mathrm{V}_{\mathrm{CC}}+0.3$	V	
	$\mathrm{V}_{\mathrm{HH} 2}$	MD3, INITX	CMOS hysteresis input	$0.7 \times \mathrm{V}_{\text {cC }}$	-	$\mathrm{V}_{\mathrm{CC}}+0.3$	V	
"L" level input voltage	$\mathrm{V}_{\text {ILS }}$	Port pin	When CMOS hysteresis input type1 are selected	$\mathrm{V}_{S S}-0.3$	-	$0.3 \times \mathrm{V}_{\text {CC }}$	V	
	$\mathrm{V}_{\text {ILC }}$	Port pin	When CMOS hysteresis input type2 are selected	$\mathrm{V}_{S S}-0.3$	-	$0.2 \times \mathrm{V}_{\mathrm{CC}}$	V	
	$\mathrm{V}_{\text {ILA }}$	Port pin	When Automotive inputs are selected	$\mathrm{V}_{\text {SS }}-0.3$	-	$0.5 \times \mathrm{V}_{\mathrm{CC}}$	V	
	$\mathrm{V}_{\text {ILT }}$	Port pin	When TTL input levels are selected	$\mathrm{V}_{\text {SS }}-0.3$	-	0.8	V	
	$\mathrm{V}_{\text {IL1 }}$	$\begin{gathered} \text { MD2 } \\ \text { to } \\ \text { MD0 } \end{gathered}$	CMOS level input	$\mathrm{V}_{S S}-0.3$	-	$0.3 \times \mathrm{V}_{\text {cc }}$	V	
	$\mathrm{V}_{\text {IL2 }}$	MD3, INITX	CMOS hysteresis input	$\mathrm{V}_{\text {SS }}-0.3$	-	$0.3 \times \mathrm{V}_{\mathrm{CC}}$	V	
"H" level output voltage	$\mathrm{V}_{\mathrm{OH} 1}$	Port pin	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA} / \\ & \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA} \end{aligned}$	$\mathrm{V}_{C C}-0.5$	-	-	V	[1]
	$\mathrm{V}_{\mathrm{OH} 2}$	$1^{2} \mathrm{C}$ common port pin	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \\ & \mathrm{l}_{\mathrm{OH}}=-3.0 \mathrm{~mA} / \\ & \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \\ & \mathrm{l}_{\mathrm{OH}}=-3.0 \mathrm{~mA} \end{aligned}$	$\mathrm{V}_{C C}-0.5$	-	-	V	
	$\mathrm{V}_{\mathrm{OH} 3}$	Port pin	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OH}}=-5.0 \mathrm{~mA} / \\ & \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OH}}=-3.0 \mathrm{~mA} \end{aligned}$	$\mathrm{V}_{C C}-0.5$	-	-	V	[1]

$\left(\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}\right.$ to $3.6 \mathrm{~V} / 4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{AV} \mathrm{SS}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C} /-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Condition	Value			Unit	Remarks
				Min	Typ	Max		
"L" level output voltage	$\mathrm{V}_{\text {OL1 }}$	Port pin	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \\ & \mathrm{l}_{\mathrm{OH}}=-2.0 \mathrm{~mA} / \\ & \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \\ & \mathrm{l}_{\mathrm{OH}}=-1.0 \mathrm{~mA} \end{aligned}$	-	-	0.4	V	[1]
	$\mathrm{V}_{\mathrm{OL} 2}$	$1^{2} \mathrm{C}$ common port pin	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \\ & \mathrm{l}_{\mathrm{OH}}=-3.0 \mathrm{~mA} / \\ & \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \\ & \mathrm{l}_{\mathrm{OH}}=-3.0 \mathrm{~mA} \end{aligned}$	-	-	0.4	V	
	$\mathrm{V}_{\text {OL3 }}$	Port pin	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \\ & \mathrm{l}_{\mathrm{OH}}=-5.0 \mathrm{~mA} / \\ & \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \\ & \mathrm{l}_{\mathrm{OH}}=-3.0 \mathrm{~mA} \end{aligned}$	-	-	0.4	V	[1]
Input leak current	1 IL	-	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{AV}_{\mathrm{CC}}=5.0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{SS}}<\mathrm{V}_{1}<\mathrm{V}_{\mathrm{CC}} \end{aligned}$	-5	-	+ 5	$\mu \mathrm{A}$	
Pull-up resistance value	$\mathrm{R}_{\text {UP }}$	Port pin	\cdots	25	50	100	k Ω	
Pull-down resistance value	$\mathrm{R}_{\text {Down }}$	Port pin	-	25	50	100	k Ω	

$\left(\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}\right.$ to 3.6 $\mathrm{V} / 4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{AV}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C} /-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Condition	Value			Unit	Remarks
				Min	Typ	Max		
Power supply current	$\mathrm{I}_{\mathrm{CC} 3}$	VCC	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ CPU core: 80 MHz ,	-	75	102	mA	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
	$\mathrm{I}_{\text {CC5 }}$	VCC	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ CPU core: 80 MHz ,	-	75	102	mA	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
	$\mathrm{I}_{\mathrm{CCs} 3}$	VCC	$\mathrm{V}_{\text {CC }}=3.3 \mathrm{~V}$ sleep mode	-	15	45	mA	
	$\mathrm{I}_{\text {ccs } 5}$	VCC	$\mathrm{V}_{\text {CC }}=5.0 \mathrm{~V}$ sleep mode	-	15	45	mA	
	$\mathrm{I}_{\text {cts3 }}$	VCC	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \text { stop mode at using } \\ & \mathrm{RTC})^{[3]} \end{aligned}$	-	100	550	$\mu \mathrm{A}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ When the CR oscillator is operating and low voltage detection is enabled.
	$\mathrm{I}_{\text {CTS5 }}$	VCC	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ stop mode at using RTC) ${ }^{[3]}$	-	200	650	$\mu \mathrm{A}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ When the CR oscillator is operating and low voltage detection is enabled.
	$\mathrm{I}_{\mathrm{CCH} 3}$	VCC	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \text { stop } \\ & \text { modeoscillation stop) } \end{aligned}$	-	100	500	$\mu \mathrm{A}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ When the CR oscillator is stopping and low voltage detection is enabled.
	$\mathrm{I}_{\mathrm{CCH} 5}$	VCC	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \text { stop }$ modeoscillation stop) ${ }^{[4]}$	-	150	600	$\mu \mathrm{A}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ When the CR oscillator is stopping and low voltage detection is enabled.
	$\mathrm{I}_{\text {CCF }}$	VCC	Flash programming (Write/Erase)	-	25	50	mA	[2]
Input capacitance	$\mathrm{C}_{\text {IN }}$	Except VCC, AVCC, VSS, AVSS	-	-	5	15	pF	

1. The drive power varies depending on the power supply voltage ($3.3 \mathrm{~V}, 5.0 \mathrm{~V}$).
2. The power supply current when writing or erasing by executing the automatic algorithm.
3. When the main clock oscillator is stopped and CR oscillator is operating (using the CR oscillator clock in the RTC) and the low voltage detection is enabled.
4. When the main clock oscillator is stopped, the CR oscillator is stopped and the low voltage detection is enabled.

15.4 AC Characteristics

15.4.1 Clock Timing

$\left(\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}\right.$ to $3.6 \mathrm{~V} / 4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{AV}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C} /-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Pin Name	Condition	Value			Unit	Remarks
				Min	Typ	Max		
Clock frequency	F_{C}	X0, X1	-	3.5	4	16	MHz	When using the oscillator circuit
				3.5	-	32	MHz	When using an external clock
Clock cycle time	${ }^{\text {c }}$ C	X0, X1		62.5	-	285.7	ns	When using the oscillator circuit
				31.25	-	285.7	ns	When using an external clock
Internal operation clock frequency	F_{CP}	-		-	-	80	MHz	CPU clock, when using PLL ${ }^{11]}$
	$\mathrm{F}_{\text {CPP }}$	-		-	-	40	MHz	Peripheral clock
Internal operation clock cycle time	t_{CP}	-		12.5	-	-	ns	CPU clock, when using PLL
	$\mathrm{t}_{\mathrm{CPP}}$	-		25	-	-	ns	Peripheral clock
Input clock pulse width	P_{WH}, $P_{\text {WL }}$	X0		30	-	-	ns	
Input clock rise/fall time	tcf, tcr	X0		-	-	5	ns	

1. When using the clock modulator, set such that the maximum value of the modulated frequency is 96 MHz or less.

Figure 2. Clock Timing

15.4.2 Reset Input

$\left(\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}\right.$ to $3.6 \mathrm{~V} / 4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{AV}$ SS $=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C} /-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Pin Name	Condition	Value		Unit
				Min	Max	
INITX input time (at power-on or stop mode)	$\mathrm{t}_{\text {INTL }}$	INITX	-	Oscillation stabilization time of oscillator + 2.6	-	ms
INITX input time (other than the above)				20	-	$\mu \mathrm{S}$

15.4.3 Specification for Power-on

$\left(\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}\right.$ to $3.6 \mathrm{~V} / 4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{AV}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C} /-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin Name	Condition	Value		Unit
				Min	Max	
Power supply rising time	t_{R}	VCC	-	0.1	100	ms
Power supply start time	-	-	-	0.2	-	V
Power supply end time	-	-	-	-	$0.9 \times \mathrm{V}_{\mathrm{CC}}$	V

15.4.4 LIN-USART Timing

$\left(\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}\right.$ to $3.6 \mathrm{~V} / 4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{AV}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C} /-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin Name	Condition	Value		Unit
				Min	Max	
Serial clock cycle time	$\mathrm{t}_{\text {SCYC }}$	SCK0 to SCK3	Internal shift clock mode	$8 \times \mathrm{t}_{\text {CLKP }}$	-	ns
SCK $\downarrow \rightarrow$ SOT delay time	tsLov	SCK0 to SCK3, SOT0 to SOT3		-80	+ 80	ns
Valid SIN \rightarrow SCK \uparrow	$\mathrm{t}_{\text {IVSH }}$	SCK0 to SCK3, SIN0 to SIN3		100	-	ns
SCK $\uparrow \rightarrow$ valid SIN hold time	${ }^{\text {tsHIX }}$	SCK0 to SCK3, SIN0 to SIN3		60	-	ns
Serial clock "H" pulse width	$\mathrm{t}_{\text {SHSL }}$	SCK0 to SCK3	External shift clock mode	$4 \times \mathrm{t}_{\text {CLKP }}$	-	ns
Serial clock "L" pulse width	$\mathrm{t}_{\text {SLSH }}$	SCK0 to SCK3		$4 \times \mathrm{t}_{\text {CLKP }}$	-	ns
SCK $\downarrow \rightarrow$ SOT delay time	${ }^{\text {stov }}$	SCKO to SCK3, SOT0 to SOT3		-	150	ns
Valid SIN \rightarrow SCK \uparrow	$\mathrm{t}_{\text {IVSH }}$	SCK0 to SCK3, SINO to SIN3		60	-	ns
SCK $\uparrow \rightarrow$ Valid SIN hold time	${ }^{\text {SHIIX }}$	SCK0 to SCK3, SIN0 to SIN3		60	-	ns

Notes:

- Above values are AC characteristics for CLK synchronous mode.
$-\mathrm{t}_{\text {CLKP }}$ is the cycle time of the peripheral clock.

Figure 3. Internal Shift Clock Mode

Figure 4. External Shift Clock Mode

15.4.5 Trigger Input Timing

$\left(\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}\right.$ to $3.6 \mathrm{~V} / 4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{AV} \mathrm{SS}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C} /-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

| Parameter | Symbol | Pin Name | Value | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | | Max | |
| External interrupt input pulse width | $t_{T R G H}$
 $t_{T R G L}$ | INT0 to INT7
 INT12, INT13 | $4 \times t_{C L K P}$ | - |

Note: $\mathrm{t}_{\mathrm{CLKP}}$ is the cycle time of the peripheral clock.

INT0 to INT7
INT12, INT13

15.4.6 Timer Related Resource Input Timing

$\left(\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}\right.$ to $3.6 \mathrm{~V} / 4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{AV}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C} /-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin Name	Value		Unit
			Min	Max	
Free-run timer input clock pulse width	$t_{\text {TIWH }}$ $t_{\text {TIWL }}$	CK0 to CK3	$4 \times \mathrm{t}_{\text {CLKP }}$	-	ns
Up/down counter input pulse width		AIN0, AIN1 BINO, BIN1 ZIN0, ZIN1	$4 \times \mathrm{t}_{\text {CLKP }}$	-	ns
Reload timer input pulse width		TIN0 to TIN3	$4 \times \mathrm{t}_{\text {CLKP }}$	-	ns
Input capture input pulse width		ICU0 to ICU3	$4 \times \mathrm{t}_{\text {CLKP }}$	-	ns

Note: $\mathrm{t}_{\text {CLKP }}$ is the cycle time of the peripheral clock.

CKO to CK3
AINO, BINO, ZINO AIN1, BIN1, ZIN1 TIN0 to TIN3 ICU0 to ICU3

15.4.7 $\quad \mathbf{I}^{2} \mathrm{C}$ Timing

$\left(\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}\right.$ to 3.6 $\mathrm{V} / 4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{AV} \mathrm{SS}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C} /-40^{\circ} \mathrm{C}$ to $\left.+85{ }^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin Name	Condition	Standard Mode		Fast Mode ${ }^{\text {[1] }}$		Unit
				Min	Max	Min	Max	
SCL clock frequency	$\mathrm{f}_{\text {SCL }}$	$\begin{gathered} \text { SDA2, } \\ \text { SDA3, SCL2, } \\ \text { SCL3 } \end{gathered}$	$\begin{gathered} \mathrm{R}=1 \mathrm{k} \Omega, \\ \mathrm{C}=50 \mathrm{pF}^{[2]} \end{gathered}$	0	100	0	400	kHz
"L" width of the SCL clock	tow			4.7	-	1.3	-	$\mu \mathrm{s}$
"H" width of the SCL clock	$\mathrm{t}_{\text {HIGH }}$			4.0	-	0.6	-	$\mu \mathrm{s}$
Bus free time between STOP and START conditions	$\mathrm{t}_{\text {BuS }}$			4.7	-	1.3	-	$\mu \mathrm{S}$
SCL $\uparrow \rightarrow$ SDA output delay time	toldat			-	$5 \times \mathrm{t}_{\text {CLKP }}$	-	$5 \times \mathrm{t}_{\text {CLKP }}$	ns
Setup time for a repeated START condition SCL $\uparrow \rightarrow$ SDA \downarrow	$\mathrm{t}_{\text {SUSTA }}$			4.7	-	0.6	-	$\mu \mathrm{S}$
Hold time for a repeated START condition SDA $\downarrow \rightarrow$ SCL \downarrow	$\mathrm{t}_{\text {HDSTA }}$			4.0	-	0.6	-	$\mu \mathrm{S}$
Setup time for STOP condition SCL $\uparrow \rightarrow$ SDA \uparrow	${ }^{\text {tsusto }}$			4.0	-	0.6	-	$\mu \mathrm{S}$
SDA data input hold time SCL $\downarrow \rightarrow$ SDA $\downarrow \uparrow$	$\mathrm{t}_{\text {HDDAT }}$			$2 \times \mathrm{t}_{\text {CLKP }}$	-	$2 \times \mathrm{t}_{\text {CLKP }}$	-	$\mu \mathrm{S}$
SDA data input setup time SDA $\downarrow \uparrow \rightarrow$ SCL \uparrow	${ }^{\text {t }}$ SUDAT			250	-	100	-	ns

1. For use at over 100 kHz , set the peripheral clock to at least 6 MHz .
2. R and C are the pull-up resistance and load capacitance of the SCL and SDA lines.

Note: $t_{\text {CLKP }}$ is the cycle time of the peripheral clock.

15.5 Electrical Characteristics for A/D Converter

$\left(\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}\right.$ to 3.6 V/4.5 V to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{AV} \mathrm{SS}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C} /-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin Name	Value			Unit	Remarks
			Min	Typ	Max		
Resolution	-	-	-	-	10	bit	
Total error ${ }^{[1]}$	-	-	-	-	± 3	LSB	
Linearity error ${ }^{[1]}$	-	-	-	-	± 2.5	LSB	
Differential linearity error ${ }^{[1]}$	-	-	-	-	± 1.9	LSB	
Zero transition voltage ${ }^{[1]}$	V_{OT}	AN0 to AN7	$\mathrm{AV}_{\text {SS }}-1.5 \mathrm{LSB}$	$\mathrm{AV}_{\text {SS }}-0.5 \mathrm{LSB}$	$\mathrm{AV}_{\text {SS }}-2.5 \mathrm{LSB}$	V	
Full scale transition voltage ${ }^{[1]}$	$\mathrm{V}_{\text {FST }}$	AN0 to AN7	AVRH-3.5 LSB	AVRH-1.5 LSB	AVRH-0.5 LSB	V	
Conversion time	-	-	$1{ }^{\text {[2] }}$	-	-	$\mu \mathrm{s}$	Using at 5 V
			$3{ }^{[2]}$	-	-	$\mu \mathrm{s}$	Using at 3.3 V
Analog port input current	$\mathrm{I}_{\text {AIN }}$	AN0 to AN7	-	-	10	$\mu \mathrm{A}$	
Analog input voltage	$\mathrm{V}_{\text {AIN }}$	AN0 to AN7	$\mathrm{AV}_{\text {SS }}$	-	AVRH	V	
Reference voltage	-	AVRH	$\mathrm{AV}_{\text {SS }}$	-	$\mathrm{AV}_{\mathrm{CC}}$	V	
Analog power supply current (analog + digital)	$\mathrm{I}_{\text {A }}$	AVCC	-	2.4	4.7	mA	Including reference supply
Reference voltage supply current	I_{R}	AVRH	-	0.65	1.0	mA	
Analog input equivalent capacitance	Cin	AN0 to AN7	-	-	8.5	pF	
Analog input equivalent resistance	Rin	AN0 to AN7	-	-	2.6	$\mathrm{k} \Omega$	AVcc ? 4.5 V
			-	-	12.1	$\mathrm{k} \Omega$	AVcc ? 3.0 V
Output impedance of analog signal source	Rext	-	-	-	4.2	$k \Omega$	

1. Measured in the CPU sleep state
2. Set no shorter than this time period in the peripheral clock and conversion setting register

15.6 Notes on the AID Converter

The diagram below shows the equivalent circuit of the sampling circuit in the A/D converter.
Apply the output impedance in the external circuit for the analog output under the following conditions.
■ The recommended output impedance for the external circuit is $4.2 \mathrm{k} \Omega$ or less.
■ If an external capacitor is used, remember to consider the capacitive voltage divider effect due to the external capacitor and the internal capacitor in the chip. Accordingly, an external capacitance several thousand times that of the internal capacitance is recommended.

- The analog voltage sampling period may be too short if the output impedance of the external circuit is high.In this case, select Rext and Tsamp to satisfy the following condition.

Rext $=$ Tsamp/ (7Cin) - Rin
Rext: Output impedance of the analog signal source
Tsamp: Sampling time
Cin : Equivalent capacitance of analog input
Rin: Equivalent resistance of analog input

15.7 Definition of A/D Converter Terms

- Resolution

Analog variation that is recognizable by an A/D converter.
■ Linearity error
Deviation between actual conversion characteristics and a straight line connecting zero transition point (00 $00000000 \leftrightarrow 000000$ 0001) and full scale transition point (11 $11111110 \leftrightarrow 111111$ 1111)

■ Differential linearity error
Deviation of input voltage, which is required for changing output code by 1 LSB, from an ideal value.

- Total error

This error indicates the difference between actual and theoretical values, including the zero transition error/full scale transition error/linearity error.

15.8 Flash Memory Program/Erase Characteristics

Parameter	Conditions	Value			Unit	Remarks
		Min	Typ	Max		
Sector erase time	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \end{aligned}$	-	0.9	3.6	s	Excludes programming prior to erasure
Chip erase time		-	9	-	s	Excludes programming prior to erasure
Word (16-bit width) programming time		-	23	370	$\mu \mathrm{S}$	Except for the overhead time of the system level
Program/Erase cycle	-	10000	-	-	cycle	
Flash memory data retention time	Average $\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$	20	-	-	year	[1]

1. The value is translated high-temperature measurement results of the technology reliability evaluation into average value at $+85^{\circ} \mathrm{C}$.

16. Ordering Information

Part Number	Package	Remarks
CY91F463NAPMC-GS-UJE1	64-pin plastic LQFP (LQG064)	Lead-free package
CY91F463NCPMC-GS-UJE1	64-pin plastic LQFP (LQG064)	Lead-free package

17. Package Dimension

SYMBOL	DIMENSION		
	MIN.	NOM.	MAX.
A	-	-	1.70
A1	0.00	-	0.20
b	0.27	0.32	0.37
c	0.09	-	0.20
D	14.00 BSC		
D1	12.00 BSC		
e	0.65 BSC		
E	14.00 BSC		
E1	12.00 BSC		
L	0.45	0.60	0.75
L1	0.30	0.50	0.70
θ	0°		
	-	8°	

NOTES

1. ALL DIMENSIONS ARE IN MILLIMETERS
2. DATUM PLANE H IS LOCATED AT THE BOTTOM OF THE MOLD PARTING LINE COINCIDENT WITH WHERE THE LEAD EXITS THE BODY.
3. DATUMS A-B AND D TO BE DETERMINED AT DATUM PLANE H.
4. TO BE DETERMINED AT SEATING PLANE C
5. DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD PROTRUSION

ALLOWABLE PROTRUSION IS 0.25 mm PRE SIDE.
DIMENSIONS D1 AND E1 INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE H.
6. DETAILS OF PIN 1 IDENTIFIER ARE OPTIONAL BUT MUST BE LOCATED WITHIN THE ZONE INDICATED.
今REGARDLESS OF THE RELATIVE SIZE OF THE UPPER AND LOWER BODY SECTIONS. DIMENSIONS D1 AND E1 ARE DETERMINED AT THE LARGEST FEATURE OF THE BODY EXCLUSIVE OF MOLD FLASH AND GATE BURRS BUT INCLUDING ANY MISMATCH BETWEEN THE UPPER AND LOWER SECTIONS OF THE MOLDER BODY.
8. DIMENSION b DOES NOT INCLUDE DAMBER PROTRUSION. THE DAMBAR PROTRUSION (S) SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED b MAXIMUM BY MORE THAN 0.08 mm . DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE LEAD FOOT
8. THESE dimensions apply to the flat section of the lead BETWEEN 0.10 mm AND 0.25 mm FROM THE LEAD TIP.
10. A1 IS dEFINED AS THE DIStANCE FROM THE SEATING PLANE TO the Lowest point of the package body.

18. Main Changes in This Edition

Spansion Publication Number: DS07-16607-4E

Page	Section	Change Results
-	-	Changed the part number. MB91F463NB \rightarrow MB91F463NC
11	l/O Circuit Type Type J	Corrected "invertor for clock input (Xout)" to "hysteresis type".
35	Memory Space	Added the sector configuration for MB91F463NC in "3. flash memory sector configuration".
81	Ordering Information	Changed the part number. MB91F463NBPMC \rightarrow MB91F463NCPMC-GSE1

NOTE: Please see "Document History" for later revised information.

Page	Section	Change Results
Rev.*B		
-	Marketing Part Numbers changed from an MB prefix to a CY prefix	
$\begin{gathered} 2, \\ 6, \\ 77, \\ 78 \end{gathered}$	Features 2. Pin Assignment 16. Ordering Information 17. Package Dimensions	Package description modified to JEDEC description. $\text { FPT-64P-M23 } \rightarrow \text { LQG064 }$
77	16. Ordering Information	Revised Marketing Part Numbers as follows: Before) - MB91F463NCPMC-GSE1 After) - CY91F463NCPMC-GS-UJE1 Added Marketing Part Numbers as follows: - CY91F463NAPMC-GS-UJE1

Document History

Document Title: CY91F463NA/F463NC/V460A, FR60, CY91460N Series, 32-bit Microcontroller Datasheet Document Number: 002-04604					
Revision	ECN	Orig. of Change	Submission Date		
**	-	AKIH	$06 / 29 / 2009$	Migrated to Cypress and assigned document number 002-04604. No change to document contents or format.	
*A	5208752	AKIH	$04 / 07 / 2016$	Updated to Cypress template	
*B	6168325	WAFA	$05 / 15 / 2018$	Revised the following items: Marketing Part Numbers changed from an MB prefix to a CY prefix. Features 2. Pin Assignment 16. Ordering Information 17. Package Dimensions For details, please see 18. Main Changes in This Edition.	

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Arm ${ }^{\circledR}$ Cortex ${ }^{\circledR}$ Microcontrollers
Automotive
Clocks \& Buffers
Interface
Internet of Things
Memory
Microcontrollers
PSoC
Power Management ICs
Touch Sensing
USB Controllers
Wireless Connectivity
cypress.com/arm cypress.com/automotive
cypress.com/clocks
cypress.com/interface
cypress.com/iot
cypress.com/memory cypress.com/mcu
cypress.com/psoc
cypress.com/pmic
cypress.com/touch
cypress.com/usb
cypress.com/wireless

PSoC ${ }^{\circledR}$ Solutions
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU

Cypress Developer Community

Community | Projects | Video | Blogs | Training | Components

Technical Support

cypress.com/support

[^0]
[^0]: © Cypress Semiconductor Corporation, 2007-2018. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries
 intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users

 of the Software is prohibited.
 OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing

 liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming

 management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device

 and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.
 the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

